Kerkhofs Marten H P M, Haijes Hanneke A, Willemsen A Marcel, van Gassen Koen L I, van der Ham Maria, Gerrits Johan, de Sain-van der Velden Monique G M, Prinsen Hubertus C M T, van Deutekom Hanneke W M, van Hasselt Peter M, Verhoeven-Duif Nanda M, Jans Judith J M
Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
Metabolites. 2020 May 18;10(5):206. doi: 10.3390/metabo10050206.
Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two -omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient's dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction.
下一代测序和下一代代谢筛查正越来越多地独立应用于先天性代谢缺陷(IEM)的临床诊断。将这两种组学技术整合到单一的生物信息学方法中,可能会进一步提高IEM的诊断率。在此,我们提出了交叉组学:一种利用患者干血斑(DBS)的非靶向代谢组学结果(以Z分数表示并映射到人类代谢途径上)来对潜在受影响基因进行优先级排序的方法。我们展示了三个参数的优化:(1)与受影响蛋白质的初级反应的最大距离;(2)一个扩展严格性阈值,反映代谢物可以参与的反应数量,以便能够扩展与某个基因相关的代谢物集;(3)一个生化严格性阈值,反映非靶向代谢组学结果的配对Z分数阈值。纳入了患有已知IEM的患者。我们对97名患者的168个DBS进行了非靶向代谢组学分析,这些患者携带46种不同的致病基因,并且我们在计算机上模拟了他们的全外显子测序结果。我们表明,为了准确地对IEM中的致病基因进行优先级排序,不仅要考虑受影响蛋白质的初级反应,还要考虑远离初级反应的更大的潜在受影响代谢物网络。