Suppr超能文献

交叉组学:临床诊断中基因组学与代谢组学的整合

Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics.

作者信息

Kerkhofs Marten H P M, Haijes Hanneke A, Willemsen A Marcel, van Gassen Koen L I, van der Ham Maria, Gerrits Johan, de Sain-van der Velden Monique G M, Prinsen Hubertus C M T, van Deutekom Hanneke W M, van Hasselt Peter M, Verhoeven-Duif Nanda M, Jans Judith J M

机构信息

Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The Netherlands.

Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The Netherlands.

出版信息

Metabolites. 2020 May 18;10(5):206. doi: 10.3390/metabo10050206.

Abstract

Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two -omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient's dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction.

摘要

下一代测序和下一代代谢筛查正越来越多地独立应用于先天性代谢缺陷(IEM)的临床诊断。将这两种组学技术整合到单一的生物信息学方法中,可能会进一步提高IEM的诊断率。在此,我们提出了交叉组学:一种利用患者干血斑(DBS)的非靶向代谢组学结果(以Z分数表示并映射到人类代谢途径上)来对潜在受影响基因进行优先级排序的方法。我们展示了三个参数的优化:(1)与受影响蛋白质的初级反应的最大距离;(2)一个扩展严格性阈值,反映代谢物可以参与的反应数量,以便能够扩展与某个基因相关的代谢物集;(3)一个生化严格性阈值,反映非靶向代谢组学结果的配对Z分数阈值。纳入了患有已知IEM的患者。我们对97名患者的168个DBS进行了非靶向代谢组学分析,这些患者携带46种不同的致病基因,并且我们在计算机上模拟了他们的全外显子测序结果。我们表明,为了准确地对IEM中的致病基因进行优先级排序,不仅要考虑受影响蛋白质的初级反应,还要考虑远离初级反应的更大的潜在受影响代谢物网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c4/7281020/8dd824ca24a2/metabolites-10-00206-g001.jpg

相似文献

1
Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics.
Metabolites. 2020 May 18;10(5):206. doi: 10.3390/metabo10050206.
3
Integration of metabolomics with genomics: Metabolic gene prioritization using metabolomics data and genomic variant (CADD) scores.
Mol Genet Metab. 2022 Jul;136(3):199-218. doi: 10.1016/j.ymgme.2022.05.002. Epub 2022 May 25.
5
Integration of genomics and metabolomics for prioritization of rare disease variants: a 2018 literature review.
J Inherit Metab Dis. 2018 May;41(3):435-445. doi: 10.1007/s10545-018-0139-6. Epub 2018 May 2.
6
Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics.
Metabolites. 2019 Oct 21;9(10):242. doi: 10.3390/metabo9100242.
9
A compendium of inborn errors of metabolism mapped onto the human metabolic network.
Mol Biosyst. 2012 Oct;8(10):2545-58. doi: 10.1039/c2mb25075f.

引用本文的文献

1
Multimodal Metabolomic Analysis Reveals Novel Metabolic Disturbances in Adults With Early Treated Phenylketonuria.
JIMD Rep. 2025 Mar 24;66(2):e70010. doi: 10.1002/jmd2.70010. eCollection 2025 Mar.
3
The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges.
Int J Neonatal Screen. 2024 Jun 21;10(3):42. doi: 10.3390/ijns10030042.
4
Multi-scale variational autoencoder for imputation of missing values in untargeted metabolomics using whole-genome sequencing data.
Comput Biol Med. 2024 Sep;179:108813. doi: 10.1016/j.compbiomed.2024.108813. Epub 2024 Jul 1.
6
Dried Blood Spots-A Platform for Therapeutic Drug Monitoring (TDM) and Drug/Disease Response Monitoring (DRM).
Eur J Drug Metab Pharmacokinet. 2023 Sep;48(5):467-494. doi: 10.1007/s13318-023-00846-4. Epub 2023 Jul 26.
9
Methods to Improve Molecular Diagnosis in Genomic Cold Cases in Pediatric Neurology.
Genes (Basel). 2022 Feb 11;13(2):333. doi: 10.3390/genes13020333.
10
Computational methods and translational applications for targeted next-generation sequencing platforms.
Genes Chromosomes Cancer. 2022 Jun;61(6):322-331. doi: 10.1002/gcc.23023. Epub 2022 Feb 3.

本文引用的文献

3
Direct-infusion based metabolomics unveils biochemical profiles of inborn errors of metabolism in cerebrospinal fluid.
Mol Genet Metab. 2019 May;127(1):51-57. doi: 10.1016/j.ymgme.2019.03.005. Epub 2019 Mar 15.
6
A proposed nosology of inborn errors of metabolism.
Genet Med. 2019 Jan;21(1):102-106. doi: 10.1038/s41436-018-0022-8. Epub 2018 Jun 8.
7
Integration of genomics and metabolomics for prioritization of rare disease variants: a 2018 literature review.
J Inherit Metab Dis. 2018 May;41(3):435-445. doi: 10.1007/s10545-018-0139-6. Epub 2018 May 2.
8
Recon3D enables a three-dimensional view of gene variation in human metabolism.
Nat Biotechnol. 2018 Mar;36(3):272-281. doi: 10.1038/nbt.4072. Epub 2018 Feb 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验