Univ Rennes, EHESP, REPERES (Recherche en pharmaco-épidémiologie et recours aux soins) - EA 7449, F-35000, Rennes, France.
University of Rennes 1, INSERM, U1085-IRSET, Rennes, France.
Sci Rep. 2020 May 22;10(1):8582. doi: 10.1038/s41598-020-65612-x.
Comorbidity scores to predict mortality are very useful to facilitate decision-making for personalized patient management. This study aim was to assess the contribution of medico-administrative data in addition to French Renal Epidemiology and Information Network (REIN) data to the development of a risk score to predict the 1-year all-cause mortality in patients with End Stage Renal Disease (ESRD), and to compare it with previous scores. Data from a derivation sample (n = 6336 patients who started dialysis in 2015 in France) obtained by linking the REIN and the French National Health Insurance Information System databases were analyzed with multivariate Cox models to select risk factors to establish the score. A randomly chosen validation sample (n = 2716 patients who started dialysis in 2015) was used to validate the score and to compare it with the comorbidity indexes developed by Wright and Charlson. The ability to predict one-year mortality of the score constructed using REIN data linked to the medico-administrative database was not higher than that of the score constructed using only REIN data (i.e., Rennes score). The Rennes score included five comorbidities, albumin, and age. This score (AUC = 0.794, 95%CI: 0.768-0.821) outperformed both the Wright (AUC = 0.631, 95%CI: 0.621-0.639; p < 0.001) and Charlson (AUC = 0.703, 95%CI: 0.689-0.716; p < 0.001) indexes. Data from the REIN registry alone, collected at dialysis start, are sufficient to develop a risk score that can predict the one-year mortality in patients with ESRD. This simple score might help identifying high risk patients and proposing the most adapted care.
合并症评分有助于预测死亡率,从而为患者的个体化管理决策提供便利。本研究旨在评估在法国肾脏流行病学和信息网络(REIN)数据的基础上,纳入医疗管理数据对预测终末期肾病(ESRD)患者 1 年全因死亡率的风险评分的建立的贡献,并与既往评分进行比较。通过链接 REIN 数据库和法国国家健康保险信息系统数据库获得了一个推导样本(n=6336 名于 2015 年在法国开始透析的患者),使用多变量 Cox 模型对数据进行分析,以筛选建立评分的风险因素。使用一个随机选择的验证样本(n=2716 名于 2015 年开始透析的患者)对评分进行验证,并与 Wright 和 Charlson 开发的合并症指数进行比较。使用与医疗管理数据库链接的 REIN 数据构建的评分预测 1 年死亡率的能力并不优于仅使用 REIN 数据构建的评分(即 Rennes 评分)。Rennes 评分包括 5 种合并症、白蛋白和年龄。该评分(AUC=0.794,95%CI:0.768-0.821)优于 Wright 评分(AUC=0.631,95%CI:0.621-0.639;p<0.001)和 Charlson 评分(AUC=0.703,95%CI:0.689-0.716;p<0.001)。仅从 REIN 登记处收集的透析开始时的数据就足以开发能够预测 ESRD 患者 1 年死亡率的风险评分。这种简单的评分可能有助于识别高危患者并提出最合适的治疗方案。