Suppr超能文献

医疗行政数据对开发预测终末期肾病患者死亡率的合并症评分的贡献。

Contribution of medico-administrative data to the development of a comorbidity score to predict mortality in End-Stage Renal Disease patients.

机构信息

Univ Rennes, EHESP, REPERES (Recherche en pharmaco-épidémiologie et recours aux soins) - EA 7449, F-35000, Rennes, France.

University of Rennes 1, INSERM, U1085-IRSET, Rennes, France.

出版信息

Sci Rep. 2020 May 22;10(1):8582. doi: 10.1038/s41598-020-65612-x.

Abstract

Comorbidity scores to predict mortality are very useful to facilitate decision-making for personalized patient management. This study aim was to assess the contribution of medico-administrative data in addition to French Renal Epidemiology and Information Network (REIN) data to the development of a risk score to predict the 1-year all-cause mortality in patients with End Stage Renal Disease (ESRD), and to compare it with previous scores. Data from a derivation sample (n = 6336 patients who started dialysis in 2015 in France) obtained by linking the REIN and the French National Health Insurance Information System databases were analyzed with multivariate Cox models to select risk factors to establish the score. A randomly chosen validation sample (n = 2716 patients who started dialysis in 2015) was used to validate the score and to compare it with the comorbidity indexes developed by Wright and Charlson. The ability to predict one-year mortality of the score constructed using REIN data linked to the medico-administrative database was not higher than that of the score constructed using only REIN data (i.e., Rennes score). The Rennes score included five comorbidities, albumin, and age. This score (AUC = 0.794, 95%CI: 0.768-0.821) outperformed both the Wright (AUC = 0.631, 95%CI: 0.621-0.639; p < 0.001) and Charlson (AUC = 0.703, 95%CI: 0.689-0.716; p < 0.001) indexes. Data from the REIN registry alone, collected at dialysis start, are sufficient to develop a risk score that can predict the one-year mortality in patients with ESRD. This simple score might help identifying high risk patients and proposing the most adapted care.

摘要

合并症评分有助于预测死亡率,从而为患者的个体化管理决策提供便利。本研究旨在评估在法国肾脏流行病学和信息网络(REIN)数据的基础上,纳入医疗管理数据对预测终末期肾病(ESRD)患者 1 年全因死亡率的风险评分的建立的贡献,并与既往评分进行比较。通过链接 REIN 数据库和法国国家健康保险信息系统数据库获得了一个推导样本(n=6336 名于 2015 年在法国开始透析的患者),使用多变量 Cox 模型对数据进行分析,以筛选建立评分的风险因素。使用一个随机选择的验证样本(n=2716 名于 2015 年开始透析的患者)对评分进行验证,并与 Wright 和 Charlson 开发的合并症指数进行比较。使用与医疗管理数据库链接的 REIN 数据构建的评分预测 1 年死亡率的能力并不优于仅使用 REIN 数据构建的评分(即 Rennes 评分)。Rennes 评分包括 5 种合并症、白蛋白和年龄。该评分(AUC=0.794,95%CI:0.768-0.821)优于 Wright 评分(AUC=0.631,95%CI:0.621-0.639;p<0.001)和 Charlson 评分(AUC=0.703,95%CI:0.689-0.716;p<0.001)。仅从 REIN 登记处收集的透析开始时的数据就足以开发能够预测 ESRD 患者 1 年死亡率的风险评分。这种简单的评分可能有助于识别高危患者并提出最合适的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786e/7244576/171a0b5d4819/41598_2020_65612_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验