Park Sung Min, Wang Bo, Paudel Tula, Park Se Young, Das Saikat, Kim Jeong Rae, Ko Eun Kyo, Lee Han Gyeol, Park Nahee, Tao Lingling, Suh Dongseok, Tsymbal Evgeny Y, Chen Long-Qing, Noh Tae Won, Lee Daesu
Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea.
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
Nat Commun. 2020 May 22;11(1):2586. doi: 10.1038/s41467-020-16207-7.
Dielectrics have long been considered as unsuitable for pure electrical switches; under weak electric fields, they show extremely low conductivity, whereas under strong fields, they suffer from irreversible damage. Here, we show that flexoelectricity enables damage-free exposure of dielectrics to strong electric fields, leading to reversible switching between electrical states-insulating and conducting. Applying strain gradients with an atomic force microscope tip polarizes an ultrathin film of an archetypal dielectric SrTiO via flexoelectricity, which in turn generates non-destructive, strong electrostatic fields. When the applied strain gradient exceeds a certain value, SrTiO suddenly becomes highly conductive, yielding at least around a 10-fold decrease in room-temperature resistivity. We explain this phenomenon, which we call the colossal flexoresistance, based on the abrupt increase in the tunneling conductance of ultrathin SrTiO under strain gradients. Our work extends the scope of electrical control in solids, and inspires further exploration of dielectric responses to strong electromechanical fields.
长期以来,电介质一直被认为不适用于纯电气开关;在弱电场下,它们表现出极低的电导率,而在强电场下,它们会遭受不可逆的损伤。在此,我们表明,挠曲电效应使电介质能够在无损情况下暴露于强电场,从而实现电状态(绝缘和导电)之间的可逆切换。用原子力显微镜尖端施加应变梯度,通过挠曲电效应使典型电介质SrTiO的超薄膜极化,进而产生无损的强静电场。当施加的应变梯度超过一定值时,SrTiO会突然变得高度导电,室温电阻率至少降低约10倍。我们基于应变梯度下超薄SrTiO隧道电导的突然增加来解释这种我们称为巨大挠曲电阻的现象。我们的工作扩展了固体中电气控制的范围,并激发了对电介质对强机电场响应的进一步探索。