Suppr超能文献

医用双能扫描仪在法医学中用于检测和识别爆炸物的可行性:一项体模研究。

Feasibility of use of medical dual energy scanner for forensic detection and characterization of explosives, a phantom study.

机构信息

Forensic Imaging Unit, University Hospital of Brest, 29609, Brest Cedex, France.

Latim, Inserm, UMR 1101, Brest Occidental University (UBO), 29238, Brest, France.

出版信息

Int J Legal Med. 2020 Sep;134(5):1915-1925. doi: 10.1007/s00414-020-02315-y. Epub 2020 May 23.

Abstract

OBJECTIVE

Detection of explosives is a challenge due to the use of improvised and concealed bombs. Post-bomb strike bodies are handled by emergency and forensic teams. We aimed to determine whether medical dual-energy computed tomography (DECT) algorithm and prediction model can readily detect and distinguish a range of explosives on the human body during disaster victim identification (DVI) processes of bombings.

MATERIALS AND METHODS

A medical DECT of 8 explosives (Semtex, Pastex, Hexamethylene triperoxide diamine, Acetone peroxide, Nitrocellulose, Pentrite, Ammonium Nitrate, and classified explosive) was conducted ex-vivo and on an anthropomorphic phantom. Hounsfield unit (HU), electron density (ED), effective atomic number (Z), and dual energy index (DEI),were compared by Wilcoxon signed rank test. Intra-class (ICC) and Pearson correlation coefficients (r) were computed. Explosives classification was performed through a prediction model with test-retest samples.

RESULTS

Except for DEI (p = 0.036), means of HU, ED, and Z were not statistically different (p > 0.05) between explosives ex-vivo and on the phantom (r > 0.80). Intra- and inter-reader ICC were good to excellent: 0.806 to 0.997 and 0.890, respectively. Except for the phantom DEI, all measurements from each individual explosive differed significantly. HU, ED, Z, and DEI differed depending on the type of explosive. Our decision tree provided Z and ED for explosives classification with high accuracy (83.7%) and excellent reliability (100%).

CONCLUSION

Our medical DECT algorithm and prediction model can readily detect and distinguish our range of explosives on the human body. This would avoid possible endangering of DVI staff.

摘要

目的

由于使用简易和隐藏的炸弹,爆炸物的检测具有挑战性。爆炸发生后,应急和法医小组会处理被袭击的人体。我们旨在确定医学双能 CT(DECT)算法和预测模型是否可以在爆炸灾难受害者识别(DVI)过程中,快速检测和区分人体上的一系列爆炸物。

材料与方法

对 8 种爆炸物(Semtex、Pastex、六亚甲基三过氧化二胺、过氧丙酮、硝化纤维素、戊四硝酯、硝酸铵和分类爆炸物)进行了离体和人体模型的医学 DECT。通过 Wilcoxon 符号秩检验比较了体素的 CT 值(HU)、电子密度(ED)、有效原子序数(Z)和双能指数(DEI)。计算了组内(ICC)和皮尔逊相关系数(r)。通过对测试-重测样本进行预测模型,对爆炸物进行分类。

结果

除 DEI(p=0.036)外,离体和模型上爆炸物的 HU、ED 和 Z 的平均值无统计学差异(p>0.05,r>0.80)。内-间读者 ICC 良好至极好:分别为 0.806 至 0.997 和 0.890。除了模型上的 DEI,每个个体爆炸物的所有测量值均有显著差异。HU、ED、Z 和 DEI 因爆炸物类型而异。我们的决策树为爆炸物分类提供了 Z 和 ED,具有高准确性(83.7%)和高可靠性(100%)。

结论

我们的医学 DECT 算法和预测模型可以快速检测和区分人体上的一系列爆炸物。这可以避免 DVI 工作人员受到潜在的威胁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验