Suppr超能文献

给予未成年肥胖大鼠氟西汀可改善其下丘脑线粒体呼吸和氧化还原状态,并诱导线粒体生物发生的转录表达。

Fluoxetine administration in juvenile overfed rats improves hypothalamic mitochondrial respiration and REDOX status and induces mitochondrial biogenesis transcriptional expression.

机构信息

Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.

Biochemistry and Physiology Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.

出版信息

Eur J Pharmacol. 2020 Aug 15;881:173200. doi: 10.1016/j.ejphar.2020.173200. Epub 2020 May 21.

Abstract

Nutritional imbalance in early life may disrupt the hypothalamic control of energy homeostasis and increase the risk of metabolic disease. The hypothalamic serotonin (5-hydroxytryptamine; 5-HT) system based in the hypothalamus plays an important role in the homeostatic control of energy balance, however the mechanisms underlying the regulation of energy metabolism by 5-HT remain poorly described. Several crucial mitochondrial functions are altered by mitochondrial stress. Adaptations to this stress include changes in mitochondrial multiplication (i.e, mitochondrial biogenesis). Due to the scarcity of evidence regarding the effects of serotonin reuptake inhibitors (SSRI) such as fluoxetine (FLX) on mitochondrial function, we sought to investigate the potential contribution of FLX on changes in mitochondrial function and biogenesis occurring in overfed rats. Using a neonatal overfeeding model, male Wistar rats were divided into 4 groups between 39 and 59 days of age based on nutrition and FLX administration: normofed + vehicle (NV), normofed + FLX (NF), overfed + vehicle (OV) and overfed + FLX (OF). We found that neonatal overfeeding impaired mitochondrial respiration and increased oxidative stress biomarkers in the hypothalamus. FLX administration in overfed rats reestablished mitochondrial oxygen consumption, increased mitochondrial uncoupling protein 2 (Ucp2) expression, reduced total reactive species (RS) production and oxidative stress biomarkers, and up-regulated mitochondrial biogenesis-related genes. Taken together our results suggest that FLX administration in overfed rats improves mitochondrial respiratory chain activity and oxidative balance and increases the transcription of genes employed in mitochondrial biogenesis favoring mitochondrial energy efficiency in response to early nutritional imbalance.

摘要

生命早期的营养失衡可能会破坏下丘脑对能量稳态的控制,并增加代谢性疾病的风险。基于下丘脑的下丘脑 5-羟色胺(5-羟色胺;5-HT)系统在能量平衡的体内平衡控制中发挥着重要作用,但是 5-HT 调节能量代谢的机制仍描述不足。几种关键的线粒体功能会因线粒体应激而改变。这种应激的适应包括线粒体增殖的变化(即线粒体生物发生)。由于关于 5-羟色胺再摄取抑制剂(SSRIs)如氟西汀(FLX)对线粒体功能的影响的证据有限,我们试图研究 FLX 对超重大鼠中线粒体功能和生物发生变化的潜在贡献。使用新生期超重模型,雄性 Wistar 大鼠根据营养和 FLX 给药在 39 至 59 天龄之间分为 4 组:正常喂养+载体(NV)、正常喂养+FLX(NF)、超重喂养+载体(OV)和超重喂养+FLX(OF)。我们发现,新生期超重会损害下丘脑的线粒体呼吸功能并增加氧化应激生物标志物。FLX 在超重大鼠中的给药恢复了线粒体耗氧量,增加了线粒体解偶联蛋白 2(Ucp2)的表达,减少了总活性氧(RS)的产生和氧化应激生物标志物,并上调了与线粒体生物发生相关的基因。总之,我们的结果表明,FLX 在超重大鼠中的给药可改善线粒体呼吸链活性和氧化平衡,并增加参与线粒体生物发生的基因的转录,从而有利于早期营养失衡时的线粒体能量效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验