Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States.
Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States.
J Neurosci Methods. 2020 Jul 15;341:108782. doi: 10.1016/j.jneumeth.2020.108782. Epub 2020 May 20.
Immune-mediated reperfusion injury is a critical component of post-ischemic central nervous system (CNS) damage. In this context, the activation and recruitment of polymorphonuclear neutrophils (PMNs) to the CNS induces neurotoxicity in part through the release of degradative enzymes, cytokines, and reactive oxygen species. However, the extent to which close-range interactions between PMNs and neurons contribute to injury in this context has not been directly investigated.
We devised a co-culture model to investigate mechanisms of PMN-dependent neurotoxicity. Specifically, we established the effect of PMN dose, co-incident neuronal ischemia, lipopolysaccharide (LPS)-induced PMN priming, and the requirement for cell-cell contact on cumulative neuron damage.
RESULTS AND COMPARISON TO EXISTING METHOD(S): Pre-exposure of day in vitro 10 primary cortical neurons to oxygen-glucose deprivation (OGD) enhanced PMN-dependent neuronal death. Likewise, LPS-induced priming of the PMN donor further increased PMN-induced toxicity in vitro compared to saline-injected controls. Compartmentalization of LPS-primed PMNs using net wells confirmed the requirement for close-range cell-cell interactions in the process of PMN-induced neuronal injury. Moreover, time-lapse imaging and quantitative neurite analyses implicate PMN-neurite interactions in this pathological response. These experiments establish a platform to investigate immune and neural factors that contribute to post-ischemic neurodegeneration.
Ischemic and immune priming enhance neurotoxicity in PMN-neuronal co-cultures. Moreover, cell-cell contact and neurite destruction are prominent features in the observed mechanism of post-ischemic neuronal death.
免疫介导的再灌注损伤是缺血后中枢神经系统(CNS)损伤的一个关键组成部分。在这种情况下,多形核粒细胞(PMN)向 CNS 的激活和募集导致神经毒性,部分是通过释放降解酶、细胞因子和活性氧物质。然而,PMN 与神经元之间的近距离相互作用在多大程度上导致了这种情况下的损伤尚未被直接研究。
我们设计了一种共培养模型来研究 PMN 依赖性神经毒性的机制。具体来说,我们建立了 PMN 剂量、同时发生的神经元缺血、脂多糖(LPS)诱导的 PMN 启动以及细胞-细胞接触对累积神经元损伤的影响。
体外培养 10 天的原代皮质神经元预先暴露于氧葡萄糖剥夺(OGD)增强了 PMN 依赖性神经元死亡。同样,LPS 诱导的 PMN 供体的预激活进一步增加了体外 PMN 诱导的毒性,与生理盐水注射对照相比。使用净井对 LPS 激活的 PMN 进行分区,证实了在 PMN 诱导的神经元损伤过程中需要近距离的细胞-细胞相互作用。此外,延时成像和定量神经突分析表明 PMN-神经突相互作用参与了这种病理反应。这些实验建立了一个平台来研究导致缺血后神经退行性变的免疫和神经因素。
缺血和免疫预激活增强了 PMN-神经元共培养物的神经毒性。此外,细胞-细胞接触和神经突破坏是观察到的缺血后神经元死亡机制中的突出特征。