Melgari Dario, Barbier Camille, Dilanian Gilles, Rücker-Martin Catherine, Doisne Nicolas, Coulombe Alain, Hatem Stéphane N, Balse Elise
INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France.
INSERM U999, University of Paris-Sud, Centre Chirurgical Marie Lannelongue, France.
J Mol Cell Cardiol. 2020 Jul;144:127-139. doi: 10.1016/j.yjmcc.2020.05.004. Epub 2020 May 20.
Ion channel trafficking powerfully influences cardiac electrical activity as it regulates the number of available channels at the plasma membrane. Studies have largely focused on identifying the molecular determinants of the trafficking of the atria-specific K1.5 channel, the molecular basis of the ultra-rapid delayed rectifier current I. Besides, regulated K1.5 channel recycling upon changes in homeostatic state and mechanical constraints in native cardiomyocytes has been well documented. Here, using cutting-edge imaging in live myocytes, we investigated the dynamics of this channel in the plasma membrane. We demonstrate that the clathrin pathway is a major regulator of the functional expression of K1.5 channels in atrial myocytes, with the microtubule network as the prominent organizer of K1.5 transport within the membrane. Both clathrin blockade and microtubule disruption result in channel clusterization with reduced membrane mobility and internalization, whereas disassembly of the actin cytoskeleton does not. Mobile K1.5 channels are associated with the microtubule plus-end tracking protein EB1 whereas static K1.5 clusters are associated with stable acetylated microtubules. In human biopsies from patients in atrial fibrillation associated with atrial remodeling, drastic modifications in the trafficking balance occurs together with alteration in microtubule polymerization state resulting in modest reduced endocytosis and increased recycling. Consequently, hallmark of atrial K1.5 dynamics within the membrane is clathrin- and microtubule- dependent. During atrial remodeling, predominance of anterograde trafficking activity over retrograde trafficking could result in accumulation ok K1.5 channels in the plasma membrane.
离子通道转运对心脏电活动有强大影响,因为它调节质膜上可用通道的数量。研究主要集中在确定心房特异性K1.5通道转运的分子决定因素,即超快速延迟整流电流I的分子基础。此外,在天然心肌细胞中,稳态状态和机械约束变化时K1.5通道的调节性再循环已有充分记录。在这里,我们利用活心肌细胞中的前沿成像技术,研究了该通道在质膜中的动态变化。我们证明,网格蛋白途径是心房肌细胞中K1.5通道功能表达的主要调节因子,微管网络是膜内K1.5转运的主要组织者。网格蛋白阻断和微管破坏都会导致通道聚集,膜流动性和内化减少,而肌动蛋白细胞骨架的解体则不会。移动的K1.5通道与微管正端追踪蛋白EB1相关,而静态的K1.5簇与稳定的乙酰化微管相关。在与心房重构相关的心房颤动患者的人体活检中,转运平衡发生剧烈改变,同时微管聚合状态改变,导致内吞作用适度减少,再循环增加。因此,膜内心房K1.5动态变化的标志是依赖于网格蛋白和微管。在心房重构过程中,顺行转运活动占逆行转运的主导地位可能导致K1.5通道在质膜中积累。