Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, 66045, USA.
Kansas Biological Survey, University of Kansas, Lawrence, Kansas, 66047, USA.
Ecology. 2020 Sep;101(9):e03099. doi: 10.1002/ecy.3099. Epub 2020 Jun 29.
The theory of alternate stable states provides an explanation for rapid ecosystem degradation, yielding important implications for ecosystem conservation and restoration. However, utilizing this theory to initiate transitions from degraded to desired ecosystem states remains a significant challenge. Applications of the alternative stable states framework may currently be impeded by a mismatch between local-scale driving processes and landscape-scale emergent system transitions. We show how nucleation theory provides an elegant bridge between local-scale positive feedback mechanisms and landscape-scale transitions between alternate stable ecosystem states. Geometrical principles can be used to derive a critical patch radius: a spatially explicit, local description of an unstable equilibrium point. This insight can be used to derive an optimal patch size that minimizes the cost of restoration, and to provide a framework to measure the resilience of desired ecosystem states to the synergistic effects of disturbance and environmental change.
交替稳定状态理论为快速的生态系统退化提供了一种解释,这对生态系统的保护和恢复具有重要意义。然而,利用这一理论来实现从退化的生态系统状态向理想的生态系统状态的转变仍然是一个巨大的挑战。替代稳定状态框架的应用可能受到局部驱动过程与景观尺度上的系统转变之间不匹配的限制。我们展示了成核理论如何在局部正反馈机制与替代稳定生态系统状态之间的景观尺度转变之间提供一个优雅的桥梁。几何原理可用于推导出临界斑块半径:一个不稳定平衡点的空间显式、局部描述。这一见解可用于推导出一个最优的斑块大小,使恢复成本最小化,并为衡量理想生态系统状态对干扰和环境变化协同作用的恢复力提供一个框架。