Suppr超能文献

局部干扰后恢复缓慢作为生态系统恢复力丧失的一个指标

Slow Recovery from Local Disturbances as an Indicator for Loss of Ecosystem Resilience.

作者信息

van de Leemput Ingrid A, Dakos Vasilis, Scheffer Marten, van Nes Egbert H

机构信息

1Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700AA Wageningen, The Netherlands.

2Institute of Integrative Biology, Adaptation to a Changing Environment, ETH Zurich, Zurich, Switzerland.

出版信息

Ecosystems. 2018;21(1):141-152. doi: 10.1007/s10021-017-0154-8. Epub 2017 Jun 2.

Abstract

A range of indicators have been proposed for identifying the elevated risk of critical transitions in ecosystems. Most indicators are based on the idea that critical slowing down can be inferred from changes in statistical properties of natural fluctuations and spatial patterns. However, identifying these signals in nature has remained challenging. An alternative approach is to infer changes in resilience from differences in standardized experimental perturbations. However, system-wide experimental perturbations are rarely feasible. Here we evaluate the potential to infer the risk of large-scale systemic transitions from local experimental or natural perturbations. We use models of spatially explicit landscapes to illustrate how recovery rates upon small-scale perturbations decrease as an ecosystem approaches a tipping point for a large-scale collapse. We show that the recovery trajectory depends on: (1) the resilience of the ecosystem at large scale, (2) the dispersal rate of organisms, and (3) the scale of the perturbation. In addition, we show that recovery of natural disturbances in a heterogeneous environment can potentially function as an indicator of resilience of a large-scale ecosystem. Our analyses reveal fundamental differences between large-scale weak and local-scale strong perturbations, leading to an overview of opportunities and limitations of the use of local disturbance-recovery experiments.

摘要

一系列指标已被提出用于识别生态系统中关键转变的高风险。大多数指标基于这样一种观点,即可以从自然波动和空间格局的统计特性变化中推断出临界减速。然而,在自然界中识别这些信号仍然具有挑战性。另一种方法是从标准化实验扰动的差异中推断恢复力的变化。然而,全系统的实验扰动很少可行。在这里,我们评估了从局部实验或自然扰动推断大规模系统转变风险的潜力。我们使用空间明确景观模型来说明,随着生态系统接近大规模崩溃的临界点,小规模扰动后的恢复率如何下降。我们表明,恢复轨迹取决于:(1)大规模生态系统的恢复力,(2)生物体的扩散率,以及(3)扰动的规模。此外,我们表明,异质环境中自然干扰的恢复可能潜在地作为大规模生态系统恢复力的指标。我们的分析揭示了大规模弱扰动和局部强扰动之间的根本差异,从而概述了使用局部干扰 - 恢复实验的机会和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e30/6954009/7ebeb2153bf3/10021_2017_154_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验