School of Metallurgy and Environment, Central South University, Changsha 410083, China.
School of Metallurgy and Environment, Central South University, Changsha 410083, China.
J Environ Sci (China). 2020 Jul;93:41-47. doi: 10.1016/j.jes.2020.03.012. Epub 2020 Apr 9.
Bauxite residues, a large volume solid waste, are in urgent need of effective disposal and management. Especially, strategies to alleviate the high alkalinity of bauxite residue remain a big challenge. Here, we developed a synergistic pyrolysis to neutralize the alkalinity of bauxite residue and upgrade the structure of biomass simultaneously. By cooperating the catalytic feature from bauxite residue, rice straw, a cellulose-enriched biomass, could prefer to produce acidic components under a hypothermal pyrolysis temperature (below 250 °C) and partial oxygen-contained atmosphere as evidenced by the synchronous TGA-FTIR analysis. In return, these in-situ produced acidic components neutralized the bauxite residue profoundly (pH decreased from 11.5 to 7.2) to obtain a neutral product with long-term water leaching stability. Also, a higher pyrolysis temperature led to neutral biochar-based products with well-defined carbonization characteristics. Thus, the biomass-driven pyrolysis strategy provides a potential to dispose the alkalinity issue of bauxite residue and further opportunities for the sustainable reuse and continuing management of bauxite residue.
铝土矿残渣是一种大量的固体废弃物,迫切需要有效的处理和管理。特别是,减轻铝土矿残渣高碱性的策略仍然是一个巨大的挑战。在这里,我们开发了一种协同热解方法,同时中和铝土矿残渣的碱性并改善生物质的结构。通过利用铝土矿残渣的催化特性,富含纤维素的生物质——稻草,在低温热解温度(低于 250°C)和部分含氧气氛下,更倾向于产生酸性成分,这可以通过同步热重分析-傅里叶变换红外光谱分析得到证明。反过来,这些原位产生的酸性成分可深度中和铝土矿残渣(pH 值从 11.5 降低至 7.2),获得具有长期水浸稳定性的中性产物。此外,较高的热解温度导致基于生物炭的中性产物具有明确的碳化特性。因此,生物质驱动的热解策略为处理铝土矿残渣的碱性问题提供了潜力,并为铝土矿残渣的可持续再利用和持续管理提供了更多机会。