Suppr超能文献

通过与废生物质共热解快速转化碱性赤泥及其植被恢复潜力。

Rapid conversion of alkaline bauxite residue through co-pyrolysis with waste biomass and its revegetation potential.

机构信息

School of Metallurgy and Environment, Central South University, Changsha 410083, China.

School of Metallurgy and Environment, Central South University, Changsha 410083, China.

出版信息

J Environ Sci (China). 2023 May;127:102-113. doi: 10.1016/j.jes.2022.06.005. Epub 2022 Jun 18.

Abstract

The extreme alkalinity of bauxite residue (BR) leads to difficulty with its reuse. Alkaline leachate and dust generation during the stacking process can pollute surrounding soil, air and water. In this work, co-pyrolysis of bauxite residue and sawdust was applied to rapidly produce a soil-like matrix that met the conditions for plant growth as demonstrated by ryegrass pot experiments. The present study aimed to characterize the detailed changes in physicochemical, mineral weathering, and microbial communities of the pyrolyzed BR with different ratios of saw dust after plant colonization for 2 months. With increasing sawdust addition during co-pyrolysis, the pH of BR decreased from 11.21 to 8.16, the fraction of macro-aggregates 0.25-2 mm in the water-stable agglomerates increased by 29.3%, and the organic carbon concentration increased from 12.5 to 320 mg/kg, whilst facilitating the degree of humification, which were all beneficial to its revegetation performance. The backscattered electron-scanning electron microscope-energy-dispersive X-ray spectrometry (BSE-SEM-EDS) results confirmed the occurrence of sodalite and calcite weathering on aggregate surfaces, and X-ray photoelectron spectroscopy (XPS) results of surface Al and Si compounds identified that some weathering products were clay minerals such as kaolinite. Furthermore, bacterial community composition and structure shifted towards typical soil taxonomic groups. These results demonstrate soil development of treated BR at an early stage. The technique is a combination of alkalinity regulation and agglomerate construction, which accelerates soil formation of BR, thus proving highly promising for potential application as an artificial soil substitute.

摘要

铝土矿残渣 (BR) 的极端碱性导致其难以重复使用。在堆积过程中,碱性浸出液和粉尘的产生会污染周围的土壤、空气和水。在这项工作中,应用铝土矿残渣和木屑共热解快速生产一种类似于土壤的基质,通过黑麦草盆栽实验证明其满足植物生长的条件。本研究旨在表征在植物定植 2 个月后,不同锯末比例共热解的 BR 的物理化学、矿物风化和微生物群落的详细变化。随着共热解过程中锯末添加量的增加,BR 的 pH 值从 11.21 降低到 8.16,水稳定团聚体中 0.25-2mm 的大团聚体分数增加了 29.3%,有机碳浓度从 12.5 增加到 320mg/kg,同时促进了腐殖化程度,这都有利于其植被恢复性能。背散射电子扫描电子显微镜-能量色散 X 射线光谱 (BSE-SEM-EDS) 结果证实了聚合体表面钠沸石和方解石风化的发生,表面 Al 和 Si 化合物的 X 光电子能谱 (XPS) 结果表明一些风化产物是粘土矿物,如高岭石。此外,细菌群落组成和结构向典型的土壤分类群转变。这些结果表明,处理后的 BR 在早期就开始了土壤的发育。该技术结合了碱度调节和团聚体构建,加速了 BR 的土壤形成,因此极有希望作为潜在的人工土壤替代物得到应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验