Suppr超能文献

基于专家混合模型的人群健康研究

Supervised mixture of experts models for population health.

机构信息

Institute for Data Exploration and Applications, Rensselaer Polytechnic Institute, Troy, USA; Mathematics Department, Rensselaer Polytechnic Institute, Troy, USA.

Computer Science Department, Rensselaer Polytechnic Institute, Troy, USA.

出版信息

Methods. 2020 Jul 1;179:101-110. doi: 10.1016/j.ymeth.2020.05.016. Epub 2020 May 21.

Abstract

We propose a machine learning driven approach to derive insights from observational healthcare data to improve public health outcomes. Our goal is to simultaneously identify patient subpopulations with differing health risks and to find those risk factors within each subpopulation. We develop two supervised mixture of experts models: a Supervised Gaussian Mixture model (SGMM) for general features and a Supervised Bernoulli Mixture model (SBMM) tailored to binary features. We demonstrate the two approaches on an analysis of high cost drivers of Medicaid expenditures for inpatient stays. We focus on the three diagnostic categories that accounted for the highest percentage of inpatient expenditures in New York State (NYS) in 2016. When compared with state-of-the-art learning methods (random forests, boosting, neural networks), our approaches provide comparable prediction performance while also extracting insightful subpopulation structure and risk factors. For problems with binary features the proposed SBMM provides as good or better performance than alternative methods while offering insightful explanations. Our results indicate the promise of such approaches for extracting population health insights from electronic health care records.

摘要

我们提出了一种机器学习驱动的方法,从观察性医疗保健数据中获取见解,以改善公共卫生结果。我们的目标是同时识别具有不同健康风险的患者亚群,并在每个亚群中找到这些风险因素。我们开发了两种监督混合专家模型:一种用于一般特征的监督高斯混合模型(SGMM)和一种针对二进制特征的监督伯努利混合模型(SBMM)。我们在对医疗补助支出住院费用的高成本驱动因素进行分析时展示了这两种方法。我们专注于 2016 年在纽约州(NYS)占住院支出比例最高的三个诊断类别。与最先进的学习方法(随机森林、提升、神经网络)相比,我们的方法在提供可比的预测性能的同时,还提取了有见地的亚群结构和风险因素。对于具有二进制特征的问题,所提出的 SBMM 提供了与替代方法一样好或更好的性能,同时提供了有见地的解释。我们的结果表明,这种方法有可能从电子医疗保健记录中提取人群健康见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验