Suppr超能文献

基于具有归一化方差局部约束线性编码的新型特征描述符的 WCE 息肉检测。

WCE polyp detection based on novel feature descriptor with normalized variance locality-constrained linear coding.

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, People's Republic of China.

出版信息

Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1291-1302. doi: 10.1007/s11548-020-02190-3. Epub 2020 May 23.

Abstract

PURPOSE

Wireless capsule endoscopy (WCE) has become an effective facility to detect digestive tract diseases. To further improve the accuracy and efficiency of computer-aided diagnosis system in the detection of intestine polyps, a novel algorithm is proposed for WCE polyp detection in this paper.

METHODS

First, by considering the rich color information of endoscopic images, a novel local color texture feature called histogram of local color difference (LCDH) is proposed for describing endoscopic images. A codebook acquisition method which is based upon positive samples is also proposed, generating more balanced visual words with the LCDH features. Furthermore, based on locality-constrained linear coding (LLC) algorithm, a normalized variance regular term is introduced as NVLLC algorithm, which considers the dispersion degree between k nearest visual words and features in the approximate coding phase. The final image representations are obtained from using the spatial matching pyramid model. Finally, the support vector machine is employed to classify the polyp images.

RESULTS

The WCE dataset including 500 polyp and 500 normal images is adopted for evaluating the proposed method. Experimental results indicate that the classification accuracy, sensitivity and specificity have reached 96.00%, 95.80% and 96.20%, which performances better than traditional ways.

CONCLUSION

A novel method for WCE polyp detection is developed using LCDH feature descriptor and NVLLC coding scheme, which achieves a promising performance and can be implemented in clinical-assisted diagnosis of intestinal diseases.

摘要

目的

无线胶囊内窥镜(WCE)已成为检测消化道疾病的有效手段。为了进一步提高计算机辅助诊断系统在检测肠息肉中的准确性和效率,本文提出了一种用于 WCE 息肉检测的新算法。

方法

首先,考虑到内窥镜图像丰富的颜色信息,提出了一种新的局部颜色纹理特征,称为局部颜色差直方图(LCDH),用于描述内窥镜图像。还提出了一种基于正样本的码本获取方法,用 LCDH 特征生成更平衡的视觉单词。此外,基于局部约束线性编码(LLC)算法,引入归一化方差正则项作为 NVLLC 算法,在近似编码阶段考虑 k 个最近视觉单词和特征之间的离散程度。最终的图像表示是通过使用空间匹配金字塔模型获得的。最后,采用支持向量机对息肉图像进行分类。

结果

采用包含 500 个息肉和 500 个正常图像的 WCE 数据集来评估所提出的方法。实验结果表明,分类准确率、灵敏度和特异性分别达到 96.00%、95.80%和 96.20%,性能优于传统方法。

结论

本文提出了一种基于 LCDH 特征描述符和 NVLLC 编码方案的 WCE 息肉检测新方法,取得了有前途的性能,并可应用于肠道疾病的临床辅助诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验