Suppr超能文献

原子分辨率下电压门控钠离子通道的累积水动力拓扑结构。

Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution.

机构信息

Department of Genetics and Cell Biology, Section Clinical Genomics, Maastricht University, Maastricht, the Netherlands.

School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.

出版信息

Proteins. 2020 Oct;88(10):1319-1328. doi: 10.1002/prot.25951. Epub 2020 Jun 13.

Abstract

Voltage-gated sodium channels (NavChs) are biological pores that control the flow of sodium ions through the cell membrane. In humans, mutations in genes encoding NavChs can disrupt physiological cellular activity thus leading to a wide spectrum of diseases. Here, we present a topological connection between the functional architecture of a NavAb bacterial channel and accumulation of atomic hydropathicity around its pore. This connection is established via a scaling analysis methodology that elucidates how intrachannel hydropathic density variations translate into hydropathic dipole field configurations along the pore. Our findings suggest the existence of a nonrandom cumulative hydropathic topology that is organized parallel to the membrane surface so that pore's stability, as well as, gating behavior are guaranteed. Given the biophysical significance of the hydropathic effect, our study seeks to provide a computational framework for studying cumulative hydropathic topological properties of NavChs and pore-forming proteins in general.

摘要

电压门控钠离子通道(NavChs)是控制钠离子通过细胞膜流动的生物孔道。在人类中,编码 NavChs 的基因突变会破坏生理细胞活动,从而导致广泛的疾病。在这里,我们展示了 NavAb 细菌通道的功能结构与孔周围原子疏水性积累之间的拓扑连接。这种连接是通过缩放分析方法建立的,该方法阐明了通道内疏水性密度变化如何转化为沿孔的疏水性偶极场构型。我们的研究结果表明,存在一种非随机的累积疏水性拓扑结构,该结构与膜表面平行排列,从而保证了孔的稳定性和门控行为。鉴于疏水性效应的生物物理意义,我们的研究旨在为研究 NavChs 以及一般的孔形成蛋白的累积疏水性拓扑性质提供计算框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验