Xenakis Markos N
VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland.
Entropy (Basel). 2023 Jun 2;25(6):896. doi: 10.3390/e25060896.
Recent evidence supports that air is the main transmission pathway of the recently identified SARS-CoV-2 coronavirus that causes COVID-19 disease. Estimating the infection risk associated with an indoor space remains an open problem due to insufficient data concerning COVID-19 outbreaks, as well as, methodological challenges arising from cases where environmental (i.e., out-of-host) and immunological (i.e., within-host) heterogeneities cannot be neglected. This work addresses these issues by introducing a generalization of the elementary Wells-Riley infection probability model. To this end, we adopted a superstatistical approach where the exposure rate parameter is gamma-distributed across subvolumes of the indoor space. This enabled us to construct a susceptible ()-exposed ()-infected () dynamics model where the Tsallis entropic index quantifies the degree of departure from a well-mixed (i.e., homogeneous) indoor-air-environment state. A cumulative-dose mechanism is employed to describe infection activation in relation to a host's immunological profile. We corroborate that the six-foot rule cannot guarantee the biosafety of susceptible occupants, even for exposure times as short as 15 min. Overall, our work seeks to provide a minimal (in terms of the size of the parameter space) framework for more realistic indoor SEI dynamics explorations while highlighting their Tsallisian entropic origin and the crucial yet elusive role that the innate immune system can play in shaping them. This may be useful for scientists and decision makers interested in probing different indoor biosafety protocols more thoroughly and comprehensively, thus motivating the use of nonadditive entropies in the emerging field of indoor space epidemiology.
最近的证据支持空气是导致新冠肺炎疾病的新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的主要传播途径。由于关于新冠肺炎疫情的数据不足,以及在环境(即宿主外)和免疫(即宿主体内)异质性不可忽视的情况下产生的方法学挑战,估计与室内空间相关的感染风险仍然是一个悬而未决的问题。这项工作通过引入基本的韦尔斯-莱利感染概率模型的推广来解决这些问题。为此,我们采用了一种超统计方法,其中暴露率参数在室内空间的子体积中呈伽马分布。这使我们能够构建一个易感(S)-暴露(E)-感染(I)动力学模型,其中Tsallis熵指数量化了与充分混合(即均匀)的室内空气环境状态的偏离程度。采用累积剂量机制来描述与宿主免疫特征相关的感染激活。我们证实,即使暴露时间短至15分钟,六英尺规则也不能保证易感居住者的生物安全。总体而言,我们的工作旨在提供一个最小(就参数空间大小而言)的框架,用于更现实地探索室内SEI动力学,同时突出其Tsallis熵起源以及先天免疫系统在塑造它们时可能发挥的关键但难以捉摸的作用。这可能对有兴趣更全面、深入地探究不同室内生物安全协议的科学家和决策者有用,从而推动在室内空间流行病学这一新兴领域中使用非加性熵。