Suppr超能文献

评估黑色素瘤预测模型报告的质量。

Evaluating the quality of reporting of melanoma prediction models.

机构信息

Department of Surgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.

Department of Surgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.

出版信息

Surgery. 2020 Jul;168(1):173-177. doi: 10.1016/j.surg.2020.04.016. Epub 2020 May 21.

Abstract

BACKGROUND

Multivariable prediction models combine patient data points to provide actionable estimates of outcomes. Prediction models for melanoma are important for guidance in the midst of the rising incidence and evolving treatment options. This study evaluates the quality of reporting of prediction models using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist.

METHODS

We performed a systematic literature search to identify publications describing development and/or validation of melanoma prediction models. For each study, reviewers assessed compliance with 22 TRIPOD items. We also assessed a model's predictive ability (area under the curve) compared with TRIPOD adherence.

RESULTS

We originally identified 67 articles, of which 27 met inclusion criteria. No study completely followed the TRIPOD checklist, and median overall adherence was 61%. Authors were least likely to report participant characteristics, title, and abstract in accordance with the TRIPOD checklist. Linear correlation between a model's area under the curve and TRIPOD checklist adherence was not statistically significant, r = -0.09 (P = .34).

CONCLUSION

Current reporting of melanoma multivariable prediction models does not meet standards. Although there is room for improvement in how melanoma models are reported, our findings do not indicate a significant relationship between the model's performance and adherence to the TRIPOD checklist.

摘要

背景

多变量预测模型结合患者数据点,提供有关结果的可操作估计。黑色素瘤预测模型对于在发病率上升和治疗选择不断发展的情况下提供指导非常重要。本研究使用透明报告个体化预后或诊断的多变量预测模型(TRIPOD)清单评估了预测模型的报告质量。

方法

我们进行了系统的文献检索,以确定描述黑色素瘤预测模型开发和/或验证的出版物。对于每项研究,审稿人评估了 22 项 TRIPOD 条目的合规性。我们还评估了模型的预测能力(曲线下面积)与 TRIPOD 依从性的比较。

结果

我们最初确定了 67 篇文章,其中 27 篇符合纳入标准。没有一项研究完全遵循 TRIPOD 清单,总体依从性中位数为 61%。作者最不可能按照 TRIPOD 清单报告参与者特征、标题和摘要。模型的曲线下面积与 TRIPOD 清单依从性之间的线性相关性没有统计学意义,r=-0.09(P=0.34)。

结论

目前黑色素瘤多变量预测模型的报告不符合标准。尽管在如何报告黑色素瘤模型方面还有改进的空间,但我们的发现并没有表明模型性能与 TRIPOD 清单的依从性之间存在显著关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验