International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden; LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.
Int Rev Neurobiol. 2020;151:1-66. doi: 10.1016/bs.irn.2020.03.001. Epub 2020 May 13.
Glioblastoma Multiforme (GBM) is one the most common intracranial tumors discovered by Burns (1800) and Abernethy (1804) based on gross morphology of the autopsied material and referred to as "medullary sarcoma" and later "fungus medullare" (Abernethy, 1804; Burns, 1800). Virchow in 1863 was the first German pathologist using histomorphological techniques discovered that GBM is a tumor of glial origin. Virchow (1863/65) also then used the term Glioma for the first time and classified as low-grade glioma and high-grade glioma very similar to that of today according to World health organization (WHO) classification (Jellinger, 1978; Virchow, 1863/65). After almost >50 years of this discovery, Baily and Cushing (1926) based on modern neuropathological tools provide the classification of gliomas that is still valid today (Baily & Cushing, 1926). Although, our knowledge about development of gliomas has advanced through development of modern cellular and molecular biological tools (Gately, McLachlan, Dowling, & Philip, 2017; Omuro & DeAngelis, 2013), therapeutic advancement of GBM still requires lot of efforts for the benefit of patients. This review summarizes new developments on pathophysiological aspects of GBM and novel therapeutic strategies to enhance quality of life of patients. These novel therapeutic approaches rely on enhanced penetration of drug therapy into the tumor tissues by use of nanomedicine for both the diagnostic and therapeutic purposes, referred to as "theranostic nanomedicine" (Alphandéry, 2020; Zhao, van Straten, Broekman, Préat, & Schiffelers, 2020). Although, the blood-brain barrier (BBB) is fenestrated around the periphery of the tumor tissues, the BBB is still tight within the deeper tissues of the tumor. Thus, drug delivery is a challenge for gliomas and requires new therapeutic advances (Zhao et al., 2020). Associated edema development around tumor tissues is another factor hindering therapeutic effects (Liu, Mei, & Lin, 2013). These factors are discussed in details using novel therapeutic advances in gliomas.
多形性胶质母细胞瘤(GBM)是由 Burns(1800 年)和 Abernethy(1804 年)基于尸检材料的大体形态首次发现的最常见的颅内肿瘤之一,并被称为“髓肉瘤”,后来又称为“真菌髓”(Abernethy,1804 年;Burns,1800 年)。Virchow 于 1863 年首次使用组织形态学技术发现,GBM 是一种源自神经胶质的肿瘤。Virchow(1863/65 年)还首次使用Glioma 一词,并根据世界卫生组织(WHO)的分类,将其分为低级别胶质瘤和高级别胶质瘤,与今天的分类非常相似(Jellinger,1978 年;Virchow,1863/65 年)。在这一发现近 50 年后,Baily 和 Cushing(1926 年)基于现代神经病理学工具,提供了至今仍有效的胶质瘤分类(Baily & Cushing,1926 年)。尽管通过现代细胞和分子生物学工具的发展,我们对胶质瘤的发展有了更多的了解(Gately、McLachlan、Dowling 和 Philip,2017 年;Omuro 和 DeAngelis,2013 年),但为了患者的利益,GBM 的治疗进展仍需要付出很多努力。本综述总结了 GBM 病理生理方面的新进展和提高患者生活质量的新治疗策略。这些新的治疗方法依赖于通过使用纳米医学增强药物治疗进入肿瘤组织的渗透,用于诊断和治疗目的,称为“治疗性纳米医学”(Alphandéry,2020 年;Zhao、van Straten、Broekman、Préat 和 Schiffelers,2020 年)。尽管肿瘤组织周围的血脑屏障(BBB)是有孔的,但肿瘤深部的 BBB 仍然是紧密的。因此,药物输送是胶质瘤的一个挑战,需要新的治疗进展(Zhao 等人,2020 年)。肿瘤组织周围的水肿发展是另一个阻碍治疗效果的因素(Liu、Mei 和 Lin,2013 年)。本综述使用胶质瘤的新治疗进展详细讨论了这些因素。