Suppr超能文献

基于机器学习的多模态MRI影像组学用于识别术后胶质瘤患者的真性肿瘤复发及治疗相关效应

Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma.

作者信息

Ren Jinfa, Zhai Xiaoyang, Yin Huijia, Zhou Fengmei, Hu Ying, Wang Kaiyu, Yan Ruifang, Han Dongming

机构信息

Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China.

Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.

出版信息

Neurol Ther. 2023 Oct;12(5):1729-1743. doi: 10.1007/s40120-023-00524-2. Epub 2023 Jul 25.

Abstract

INTRODUCTION

Conventional magnetic resonance imaging (MRI) features have difficulty distinguishing glioma true tumor recurrence (TuR) from treatment-related effects (TrE). We aimed to develop a machine-learning model based on multimodality MRI radiomics to help improve the efficiency of identifying glioma TuR.

METHODS

A total of 131 patients were enrolled and randomly divided into the training set (n = 91) and the test set (n = 40). Radiomic features were extracted from the postoperative enhancement (PoE) region and edema (ED) region from four routine MRI sequences. After analyses of Spearman's rank correlation coefficient, and least absolute shrinkage and selection operator, the key radiomic features were selected to construct support vector machine (SVM) and k-nearest neighbor (KNN) models. Decision curve analysis (DCA) and receiver operating characteristic (ROC) curves were used to analyze the performance.

RESULTS

The PoE model had a significantly higher area under curve (AUC) than the ED model (p < 0.05). Among the models constructed with a single sequence, the model using PoE regional features from CE-T1WI was superior to other models, with an AUC of 0.905 for SVM and 0.899 for KNN. In multimodality models, the PoE model outperformed the ED model with an AUC of 0.931 for SVM and 0.896 for KNN. The multimodality model, which combined routine sequences and the whole regional features, showed a slightly better performance with an AUC of 0.965 for SVM and 0.955 for KNN. Decision curve analysis showed the good clinical utility of multimodal radiomics models.

CONCLUSIONS

Multimodality radiomics can identify glioma TuR and TrE, potentially aiding clinical decision-making for individualized treatment. And edematous regions may provide useful information for recognizing recurrence.

RETROSPECTIVELY REGISTERED

2021.04.15, No:2020039.

摘要

引言

传统磁共振成像(MRI)特征难以区分胶质瘤真正的肿瘤复发(TuR)与治疗相关效应(TrE)。我们旨在开发一种基于多模态MRI放射组学的机器学习模型,以帮助提高识别胶质瘤TuR的效率。

方法

共纳入131例患者,随机分为训练集(n = 91)和测试集(n = 40)。从四个常规MRI序列的术后强化(PoE)区域和水肿(ED)区域提取放射组学特征。经过Spearman等级相关系数分析以及最小绝对收缩和选择算子分析后,选择关键放射组学特征构建支持向量机(SVM)和k近邻(KNN)模型。采用决策曲线分析(DCA)和受试者工作特征(ROC)曲线分析性能。

结果

PoE模型的曲线下面积(AUC)显著高于ED模型(p < 0.05)。在单序列构建的模型中,使用CE-T1WI的PoE区域特征构建的模型优于其他模型,SVM的AUC为0.905,KNN的AUC为0.899。在多模态模型中,PoE模型优于ED模型,SVM的AUC为0.931,KNN的AUC为0.896。结合常规序列和整个区域特征的多模态模型表现稍好,SVM的AUC为0.965,KNN的AUC为0.955。决策曲线分析显示多模态放射组学模型具有良好的临床实用性。

结论

多模态放射组学可以识别胶质瘤TuR和TrE,可能有助于个体化治疗的临床决策。并且水肿区域可能为识别复发提供有用信息。

回顾性注册

2021.04.15,编号:2020039

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed72/10444917/8e8b957e9b9b/40120_2023_524_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验