Suppr超能文献

Geminin 对于 Hox 基因调控在发育肢体的模式形成中是必需的。

Geminin is required for Hox gene regulation to pattern the developing limb.

机构信息

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

出版信息

Dev Biol. 2020 Aug 1;464(1):11-23. doi: 10.1016/j.ydbio.2020.05.007. Epub 2020 May 23.

Abstract

Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5' Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.

摘要

脊椎动物肢体的复杂结构的发育需要多种调控途径和蛋白质之间的精心协调相互作用。在这些途径和蛋白质中,5' Hox 转录因子表达的精确调控对于适当的肢体芽模式形成和不同肢体骨骼元素的精细发育至关重要。在这里,我们确定 Geminin (Gmnn) 是该过程的一种新的调节剂。Gmnn 缺陷的条件模型导致前肢骨骼元素的缺失或严重减少,而前肢指节和后肢则不受影响。在这个 Gmnn 缺陷模型中,5' Hox 基因表达扩展到胚胎前肢芽的更近端和更前部区域。第二个 Gmnn 缺陷的条件模型则导致后肢骨骼元素和后肢多指的类似但更严重的减少,而不影响前肢。在这个模型中,Gmnn 缺陷胚胎的前肢芽中出现了一个异位的后 SHH 信号中心。这个中心异位表达了 Hoxd13、HOXD13 靶标 Shh 和 SHH 靶标 Ptch1,而这些突变后肢芽也降低了 GLI3 的切割形式,即 SHH 途径拮抗剂。总之,这项工作描绘了 Gmnn 在调节 Hox 表达以模式化脊椎动物肢体方面的新作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0237/8362291/702ba7d161dc/nihms-1721674-f0001.jpg

相似文献

5
GATA6 is a crucial regulator of Shh in the limb bud.GATA6 是肢芽中 Shh 的关键调节因子。
PLoS Genet. 2014 Jan;10(1):e1004072. doi: 10.1371/journal.pgen.1004072. Epub 2014 Jan 9.

本文引用的文献

3
Sonic Hedgehog Signaling in Limb Development.肢体发育中的音猬因子信号通路
Front Cell Dev Biol. 2017 Feb 28;5:14. doi: 10.3389/fcell.2017.00014. eCollection 2017.
5
Limb development: a paradigm of gene regulation.肢体发育:基因调控的范例。
Nat Rev Genet. 2017 Apr;18(4):245-258. doi: 10.1038/nrg.2016.167. Epub 2017 Feb 6.
8
The many lives of SHH in limb development and evolution.音猬因子(SHH)在肢体发育与进化中的多重作用
Semin Cell Dev Biol. 2016 Jan;49:116-24. doi: 10.1016/j.semcdb.2015.12.018. Epub 2016 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验