Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Dev Biol. 2020 Aug 1;464(1):11-23. doi: 10.1016/j.ydbio.2020.05.007. Epub 2020 May 23.
Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5' Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.
脊椎动物肢体的复杂结构的发育需要多种调控途径和蛋白质之间的精心协调相互作用。在这些途径和蛋白质中,5' Hox 转录因子表达的精确调控对于适当的肢体芽模式形成和不同肢体骨骼元素的精细发育至关重要。在这里,我们确定 Geminin (Gmnn) 是该过程的一种新的调节剂。Gmnn 缺陷的条件模型导致前肢骨骼元素的缺失或严重减少,而前肢指节和后肢则不受影响。在这个 Gmnn 缺陷模型中,5' Hox 基因表达扩展到胚胎前肢芽的更近端和更前部区域。第二个 Gmnn 缺陷的条件模型则导致后肢骨骼元素和后肢多指的类似但更严重的减少,而不影响前肢。在这个模型中,Gmnn 缺陷胚胎的前肢芽中出现了一个异位的后 SHH 信号中心。这个中心异位表达了 Hoxd13、HOXD13 靶标 Shh 和 SHH 靶标 Ptch1,而这些突变后肢芽也降低了 GLI3 的切割形式,即 SHH 途径拮抗剂。总之,这项工作描绘了 Gmnn 在调节 Hox 表达以模式化脊椎动物肢体方面的新作用。