Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.
Part Fibre Toxicol. 2020 May 25;17(1):16. doi: 10.1186/s12989-020-00344-4.
Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.
纳米尺度下先进材料的毒性测试和监管,即纳米安全性,面临着越来越多的纳米材料及其需要评估其潜在人类健康影响的特性变体的挑战。现有的依赖动物的毒性测试工具在时间和资源方面都很繁重,而且越来越不符合减少动物实验的国际努力。因此,需要更快、更便宜、更敏感和有效的动物替代品,这些替代品需要有机制证据的支持。更重要的是,迫切需要开发替代测试策略,以帮助证明测试的战略优先化或针对最明显的不良结果、选择特定终点和检测方法以及确定高关注的纳米材料是合理的。不良结局途径(AOP)框架是一个系统过程,它利用有关毒性反应的可用机制信息,并描述分子起始事件、一系列中间关键事件与不良结局之间的因果或机制联系。AOP 框架提供了实用的见解,以促进替代测试策略的发展。本综述将详细介绍 AOP 框架及其在纳米毒理学中的应用、开发 AOP 的工具以及毒理基因组学的作用,总结目前处于不同开发阶段的与纳米材料吸入毒性相关的各种 AOP。该综述还展示了一个源自连接所有 AOP 的 AOP 网络,表明纳米材料引起的几种不良结局源自描述纳米材料与肺细胞相互作用的分子起始事件,并涉及类似的中间关键事件。最后,使用已建立的肺纤维化 AOP 示例,本综述将讨论可用于评估肺纤维化的各种体外测试以及如何利用这些信息支持用于肺纤维化的分层测试策略。AOP 及其 AOP 网络使我们能够更深入地了解纳米材料吸入毒性所涉及的机制,并为开发替代测试方法提供了策略,以用于纳米材料的危害和风险评估。