Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.
Department of Statistics, London School of Economics and Political Science, London, UK.
Psychometrika. 2020 Jun;85(2):358-372. doi: 10.1007/s11336-020-09704-7. Epub 2020 May 26.
We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika 84:124-146, 2019b) for exploratory item factor analysis (IFA). This algorithm estimates a multidimensional IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in Chen et al. (2019b). Thanks to the analytic and computational properties of SVD, this algorithm guarantees a unique solution and has computational advantage over other exploratory IFA methods. Its computational advantage becomes significant when the numbers of respondents, items, and factors are all large. This algorithm can be viewed as a generalization of principal component analysis to binary data. In this note, we provide the statistical underpinning of the algorithm. In particular, we show its statistical consistency under the same double asymptotic setting as in Chen et al. (2019b). We also demonstrate how this algorithm provides a scree plot for investigating the number of factors and provide its asymptotic theory. Further extensions of the algorithm are discussed. Finally, simulation studies suggest that the algorithm has good finite sample performance.
我们重新审视了 Chen 等人在《心理测量学》(Psychometrika 84:124-146, 2019b)中给出的用于探索性项目因素分析(IFA)的奇异值分解(SVD)算法。该算法通过 SVD 估计多维 IFA 模型,并被用于 Chen 等人(2019b)中联合极大似然估计的起点。由于 SVD 的分析和计算特性,该算法保证了唯一解,并具有优于其他探索性 IFA 方法的计算优势。当受访者、项目和因素的数量都很大时,其计算优势变得非常显著。该算法可以看作是主成分分析在二进制数据上的推广。在本说明中,我们提供了该算法的统计基础。特别是,我们展示了在与 Chen 等人(2019b)相同的双渐近设置下的统计一致性。我们还演示了该算法如何提供用于调查因素数量的碎石图,并提供其渐近理论。进一步扩展了该算法。最后,模拟研究表明该算法在有限样本下表现良好。