Sandor Speciality Diagnostics Pvt Ltd.
Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India.
Curr Opin Organ Transplant. 2020 Aug;25(4):435-441. doi: 10.1097/MOT.0000000000000770.
The success of organ transplant is determined by number of demographic, clinical, immunological and genetic variables. Artificial intelligence tools, such as artificial neural networks (ANNs) or classification and regression trees (CART) can handle multiple independent variables and predict the dependent variables by deducing the complex nonlinear relationships between variables.
In the last two decades, several researchers employed these tools to identify donor-recipient matching pairs, to optimize immunosuppressant doses, to predict allograft survival and to minimize adverse drug reactions. These models showed better performance characteristics than the empirical dosing strategies in terms of sensitivity, specificity, overall accuracy, or area under the curve of receiver-operating characteristic curves. The performance of the models was dependent directly on the input variables. Recent studies identified protein biomarkers and pharmacogenetic determinants of immunosuppressants as additional variables that increase the precision in prediction. Accessibility of medical records, proper follow-up of transplant cases, deep understanding of pharmacokinetic and pharmacodynamic pathways of immunosuppressant drugs coupled with genomic and proteomic markers are essential in developing an effective artificial intelligence platform for transplantation.
Artificial intelligence has a greater clinical utility both in pretransplantation and posttransplantation periods to get favourable clinical outcomes, thus ensuring successful graft survival.
器官移植的成功取决于许多人口统计学、临床、免疫和遗传变量。人工智能工具,如人工神经网络 (ANNs) 或分类和回归树 (CART),可以处理多个独立变量,并通过推导变量之间复杂的非线性关系来预测因变量。
在过去的二十年中,一些研究人员使用这些工具来识别供体-受者匹配对,优化免疫抑制剂剂量,预测移植物存活率,并最小化药物不良反应。与经验性给药策略相比,这些模型在灵敏度、特异性、总体准确性或接收者操作特征曲线下的面积方面表现出更好的性能特征。模型的性能直接取决于输入变量。最近的研究确定了蛋白质生物标志物和免疫抑制剂的药物遗传学决定因素作为额外的变量,增加了预测的准确性。获取医疗记录、对移植病例进行适当随访、深入了解免疫抑制剂的药代动力学和药效学途径以及基因组和蛋白质组标志物对于开发有效的移植人工智能平台至关重要。
人工智能在移植前和移植后都具有更大的临床实用性,以获得良好的临床结果,从而确保成功的移植物存活。