Liver Transplantation Unit, Hospital Universitario Reina Sofía, Ciberhed, Maimonides Biomedical Research Institute of Cordoba - IMIBIC, Cordoba, Spain.
Curr Opin Organ Transplant. 2020 Aug;25(4):406-411. doi: 10.1097/MOT.0000000000000781.
Classifiers based on artificial intelligence can be useful to solve decision problems related to the inclusion or removal of possible liver transplant candidates, and assisting in the heterogeneous field of donor-recipient (D-R) matching.
Artificial intelligence models can show a great advantage by being able to handle a multitude of variables, be objective and help in cases of similar probabilities. In the field of liver transplantation, the most commonly used classifiers have been artificial neural networks (ANNs) and random forest classifiers. ANNs are excellent tools for finding patterns which are far too complex for a clinician and are capable of generating near-perfect predictions on the data on which they are fit, yielding excellent prediction capabilities reaching 95% for 3 months graft survival. On the other hand, RF can overcome ANNs in some of their limitations, mainly because of the lack of information on the variables they provide. Random forest algorithms may allow for improved confidence with the use of marginal organs and better outcome after transplantation.
ANNs and random forest can handle a multitude of structured and unstructured parameters, and establish non explicit relationships among risk factors of clinical relevance.
基于人工智能的分类器可用于解决与纳入或排除可能的肝移植候选者相关的决策问题,并有助于供体-受者(D-R)匹配的异质领域。
人工智能模型通过能够处理大量变量、具有客观性并在概率相似的情况下提供帮助,可以显示出巨大的优势。在肝移植领域,最常用的分类器是人工神经网络(ANNs)和随机森林分类器。ANNs 是发现对临床医生来说过于复杂的模式的极好工具,并且能够对其拟合的数据生成近乎完美的预测,对 3 个月移植物存活率的预测能力达到 95%。另一方面,随机森林算法可以通过使用边缘器官和移植后更好的结果来克服 ANNs 的一些局限性,主要是由于它们提供的变量信息不足。随机森林算法可以通过使用边缘器官和移植后更好的结果来克服 ANNs 的一些局限性,主要是由于它们提供的变量信息不足。随机森林算法可以通过使用边缘器官和移植后更好的结果来克服 ANNs 的一些局限性,主要是由于它们提供的变量信息不足。随机森林算法可以通过使用边缘器官和移植后更好的结果来克服 ANNs 的一些局限性,主要是由于它们提供的变量信息不足。随机森林算法可能允许使用边缘器官,并改善移植后的结果,从而提高信心。
人工神经网络和随机森林可以处理大量的结构化和非结构化参数,并建立临床相关风险因素之间的非显式关系。