Department of Chemistry, University of California, Davis, California 95616, United States.
Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093, United States.
Biochemistry. 2020 Jul 7;59(26):2387-2400. doi: 10.1021/acs.biochem.0c00279. Epub 2020 Jun 17.
The cyanobacterial circadian clock in consists of three proteins, KaiA, KaiB, and KaiC. KaiA and KaiB rhythmically interact with KaiC to generate stable oscillations of KaiC phosphorylation with a period of 24 h. The observation of stable circadian oscillations when the three clock proteins are reconstituted and combined in vitro makes it an ideal system for understanding its underlying molecular mechanisms and circadian clocks in general. These oscillations were historically monitored in vitro by gel electrophoresis of reaction mixtures based on the differing electrophoretic mobilities between various phosphostates of KaiC. As the KaiC phospho-distribution represents only one facet of the oscillations, orthogonal tools are necessary to explore other interactions to generate a full description of the system. However, previous biochemical assays are discontinuous or qualitative. To circumvent these limitations, we developed a spin-labeled KaiB mutant that can differentiate KaiC-bound KaiB from free KaiB using continuous-wave electron paramagnetic resonance spectroscopy that is minimally sensitive to KaiA. Similar to wild-type (WT-KaiB), this labeled mutant, in combination with KaiA, sustains robust circadian rhythms of KaiC phosphorylation. This labeled mutant is hence a functional surrogate of WT-KaiB and thus participates in and reports on autonomous macroscopic circadian rhythms generated by mixtures that include KaiA, KaiC, and ATP. Quantitative kinetics could be extracted with improved precision and time resolution. We describe design principles, data analysis, and limitations of this quantitative binding assay and discuss future research necessary to overcome these challenges.
中的蓝藻生物钟由三种蛋白质组成,分别是 KaiA、KaiB 和 KaiC。KaiA 和 KaiB 与 KaiC 周期性相互作用,产生具有 24 小时周期的 KaiC 磷酸化稳定振荡。当这三种时钟蛋白在体外重新组成和组合时,观察到稳定的生物钟振荡,这使其成为理解其潜在分子机制和生物钟的理想系统。这些振荡在历史上通过基于 KaiC 不同磷酸化状态之间不同电泳迁移率的反应混合物的凝胶电泳在体外进行监测。由于 KaiC 的磷酸化分布仅代表振荡的一个方面,因此需要正交工具来探索其他相互作用,以生成系统的完整描述。然而,以前的生化测定是不连续的或定性的。为了克服这些限制,我们开发了一种自旋标记的 KaiB 突变体,该突变体使用连续波电子顺磁共振光谱可以区分 KaiC 结合的 KaiB 和游离的 KaiB,该方法对 KaiA 的灵敏度最小。与野生型 (WT-KaiB) 相似,这种标记的突变体与 KaiA 结合,维持 KaiC 磷酸化的强大生物钟节律。因此,这种标记的突变体是 WT-KaiB 的功能替代物,因此参与并报告包括 KaiA、KaiC 和 ATP 的混合物产生的自主宏观生物钟节律。可以以更高的精度和时间分辨率提取定量动力学。我们描述了这种定量结合测定的设计原则、数据分析和局限性,并讨论了克服这些挑战所需的未来研究。