Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, United States of America.
PLoS Genet. 2020 May 26;16(5):e1008770. doi: 10.1371/journal.pgen.1008770. eCollection 2020 May.
Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model.
激素依赖性增强子的激活包括组蛋白乙酰化和中介体募集。组蛋白乙酰化主要通过双模态开关模型来解释,在该模型中,组蛋白去乙酰化酶(HDACs)与染色质分离,而组蛋白乙酰转移酶(HATs)被募集。该模型建立在几十年的类固醇受体转录调控研究基础上。然而,双模态开关模型的一般概念尚未在全基因组范围内得到严格测试。我们使用基因组学方法研究甲状腺激素受体(TR)激活的增强子乙酰化,该受体被描述为双模态开关。对hypo-和hyperthyroid 野生型、TR 缺陷和 NCOR1 破坏小鼠肝脏中的 H3 乙酰化、HAT 和 HDAC ChIP-seq 分析揭示了三种类型的甲状腺激素(T3)调节增强子。一部分增强子在没有激素的情况下与 HDAC3-NCOR1 结合,并在没有 T3 水平的情况下组成性地占据 TR 和 HATs,这表明在没有激素的情况下存在一个有潜力的增强子状态。在存在 T3 的情况下,HDAC3-NCOR1 从这些增强子上解离,导致组蛋白乙酰化,这表明 HDACs 在有潜力的增强子上具有组蛋白乙酰化变阻器功能。另一部分增强子不被 HDACs 占据,而是以 T3 依赖的方式发生乙酰化,其中 TR 与 HATs 一起被募集到染色质上。最后,一部分增强子不直接被 TR 占据,但需要 TR 来进行组蛋白乙酰化。这种间接的增强子激活涉及与超增强子或拓扑关联域内的 TR 结合增强子的共同关联。总的来说,这证明了各种机制控制着激素依赖性转录,并为原本简单的双模态开关模型增添了重要细节。