Santaniello Sabato, Gale John T, Montgomery Erwin B, Sarma Sridevi V
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.
Kent State University, Kent, OH 44242 USA.
Proc IEEE Conf Decis Control. 2012 Dec;2012:1645-1650. doi: 10.1109/cdc.2012.6426098. Epub 2013 Feb 4.
Striatum is a major stage of the motor loop but, despite a pivotal role in the execution of movements, it has been poorly studied thus far under Parkinsonian conditions and Deep Brain Stimulation (DBS). We propose a computational framework to analyze the spiking activity of striatal neurons under several conditions. This framework combines point process models and single unit recordings, and separately evaluates the effects of the spiking history, DBS frequency, and other cells on the neuronal discharge pattern, thus giving a full characterization of non-stationary neuronal dynamics and inter-neuronal dependencies. We applied this framework to 166 striatal neurons collected in a monkey both at rest and during DBS (30-130 Hz). Our analysis was conducted both before and after treatment of the animal with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which evoked Parkinsonian-like motor disorders. We reported that high frequency (≥100 Hz) DBS reduces non-stationary dynamics and inter-neuronal dependencies by regularizing the discharge patterns both in MPTP and normal striatum, while the combination of MPTP and low frequency (30-80 Hz) DBS enhances these features, thus suggesting that pattern regularization in striatum might contribute to the therapeutic effect of high frequency DBS and presumably results from the overlap of feed-forward and feedback activation along the motor loop (reinforcement).
纹状体是运动环路的一个主要阶段,尽管在运动执行中起着关键作用,但迄今为止,在帕金森病条件和深部脑刺激(DBS)下对其研究甚少。我们提出了一个计算框架来分析几种条件下纹状体神经元的放电活动。该框架结合了点过程模型和单单元记录,并分别评估放电历史、DBS频率和其他细胞对神经元放电模式的影响,从而全面表征非平稳神经元动力学和神经元间的依赖性。我们将这个框架应用于在猴子处于静息状态和DBS(30 - 130 Hz)期间收集的166个纹状体神经元。我们在给动物注射1 - 甲基 - 4 - 苯基 - 1,2,3,6 - 四氢吡啶(MPTP)诱发帕金森样运动障碍之前和之后都进行了分析。我们报告称,高频(≥100 Hz)DBS通过使MPTP和正常纹状体中的放电模式规则化来降低非平稳动力学和神经元间的依赖性,而MPTP与低频(30 - 80 Hz)DBS的组合增强了这些特征,因此表明纹状体中的模式规则化可能有助于高频DBS的治疗效果,并且可能是由沿运动环路的前馈和反馈激活的重叠(强化)导致的。