Xu Min, Qian Pengjiang, Zheng Jiamin, Ge Hongwei, Muzic Raymond F
School of Internet of Things Technology, Wuxi Institute of Technology, Wuxi 214121, China.
School of Internet of Things, Jiangnan University, Wuxi 214122, China.
Comput Math Methods Med. 2020 May 5;2020:4519483. doi: 10.1155/2020/4519483. eCollection 2020.
We propose a new method for fast organ classification and segmentation of abdominal magnetic resonance (MR) images. Magnetic resonance imaging (MRI) is a new type of high-tech imaging examination fashion in recent years. Recognition of specific target areas (organs) based on MR images is one of the key issues in computer-aided diagnosis of medical images. Artificial neural network technology has made significant progress in image processing based on the multimodal MR attributes of each pixel in MR images. However, with the generation of large-scale data, there are few studies on the rapid processing of large-scale MRI data. To address this deficiency, we present a fast radial basis function artificial neural network (Fast-RBF) algorithm. The importance of our efforts is as follows: (1) The proposed algorithm achieves fast processing of large-scale image data by introducing the -insensitive loss function, the structural risk term, and the core-set principle. We apply this algorithm to the identification of specific target areas in MR images. (2) For each abdominal MRI case, we use four MR sequences (fat, water, in-phase (IP), and opposed-phase (OP)) and the position coordinates (, ) of each pixel as the input of the algorithm. We use three classifiers to identify the liver and kidneys in the MR images. Experiments show that the proposed method achieves a higher precision in the recognition of specific regions of medical images and has better adaptability in the case of large-scale datasets than the traditional RBF algorithm.
我们提出了一种用于腹部磁共振(MR)图像快速器官分类和分割的新方法。磁共振成像(MRI)是近年来一种新型的高科技成像检查方式。基于MR图像识别特定目标区域(器官)是医学图像计算机辅助诊断中的关键问题之一。基于MR图像中每个像素的多模态MR属性,人工神经网络技术在图像处理方面取得了显著进展。然而,随着大规模数据的产生,针对大规模MRI数据快速处理的研究较少。为解决这一不足,我们提出了一种快速径向基函数人工神经网络(Fast-RBF)算法。我们工作的重要性如下:(1)所提出的算法通过引入不敏感损失函数、结构风险项和核心集原则,实现了对大规模图像数据的快速处理。我们将该算法应用于MR图像中特定目标区域的识别。(2)对于每个腹部MRI病例,我们使用四个MR序列(脂肪、水、同相位(IP)和反相位(OP))以及每个像素的位置坐标(x,y)作为算法的输入。我们使用三个分类器来识别MR图像中的肝脏和肾脏。实验表明,与传统RBF算法相比,所提出的方法在医学图像特定区域的识别中具有更高的精度,并且在大规模数据集情况下具有更好的适应性。