Adams Lisa C, Bressem Keno K, Scheibl Sonja, Nunninger Max, Gentsch Andre, Fahlenkamp Ute L, Eckardt Kai-Uwe, Hamm Bernd, Makowski Marcus R
Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany.
Department of Radiology, Charité, Hindenburgdamm 30, 12203 Berlin, Germany.
J Clin Med. 2020 May 21;9(5):1551. doi: 10.3390/jcm9051551.
Magnetic resonance relaxometry (MRR) offers highly reproducible pixel-wise parametric maps of T1 and T2 relaxation times, reflecting specific tissue properties, while diffusion-tensor imaging (DTI) is a promising technique for the characterization of microstructural changes, depending on the directionality of molecular motion. Both MMR and DTI may be used for non-invasive assessment of parenchymal changes caused by kidney injury or graft dysfunction.
We examined 46 patients with kidney transplantation and 16 healthy controls, using T1/T2 relaxometry and DTI at 3 T. Twenty-two early transplants and 24 late transplants were included. Seven of the patients had prior renal biopsy (all of them dysfunctional allografts; 6/7 with tubular atrophy and 7/7 with interstitial fibrosis).
Compared to healthy controls, T1 and T2 relaxation times in the renal parenchyma were increased after transplantation, with the highest T1/T2 values in early transplants (T1: 1700 ± 53 ms/T2: 83 ± 6 ms compared to T1: 1514 ± 29 ms/T2: 78 ± 4 ms in controls). Medullary and cortical ADC/FA values were decreased in early transplants and highest in controls, with medullary FA values showing the most pronounced difference. Cortical renal T1, mean medullary FA and corticomedullary differentiation (CMD) values correlated best with renal function as measured by GFR (cortical T1: = -0.63, < 0.001; medullary FA: = 0.67, < 0.001; FA CMD: = 0.62, < 0.001). Mean medullary FA proved to be a significant predictor for tubular atrophy ( < 0.001), while cortical T1 appeared as a significant predictor of interstitial fibrosis ( = 0.003).
Cortical T1, medullary FA, and FA CMD might serve as new imaging biomarkers of renal function and histopathologic microstructure.
磁共振弛豫测量法(MRR)可提供T1和T2弛豫时间的高度可重复的逐像素参数图,反映特定的组织特性,而扩散张量成像(DTI)是一种很有前景的用于表征微观结构变化的技术,这取决于分子运动的方向性。MRR和DTI均可用于对肾损伤或移植肾功能障碍引起的实质变化进行无创评估。
我们对46例肾移植患者和16名健康对照者进行了检查,在3T条件下使用T1/T2弛豫测量法和DTI。其中包括22例早期移植患者和24例晚期移植患者。7例患者曾接受过肾活检(所有患者均为移植肾功能不全;6/7伴有肾小管萎缩,7/7伴有间质纤维化)。
与健康对照者相比,移植后肾实质的T1和T2弛豫时间增加,早期移植患者的T1/T2值最高(T1:1700±53ms/T2:83±6ms,而对照者为T1:1514±29ms/T2:78±4ms)。早期移植患者的髓质和皮质ADC/FA值降低,对照者最高,髓质FA值差异最为明显。皮质肾T1、平均髓质FA和皮质髓质分化(CMD)值与通过肾小球滤过率(GFR)测量的肾功能相关性最佳(皮质T1:r = -0.63,P < 0.001;髓质FA:r = 0.67,P < 0.001;FA CMD:r = 0.62,P < 0.001)。平均髓质FA被证明是肾小管萎缩的重要预测指标(P < 0.001),而皮质T1似乎是间质纤维化的重要预测指标(P = 0.003)。
皮质T1、髓质FA和FA CMD可能作为肾功能和组织病理学微观结构的新成像生物标志物。