Department of Chemistry, Stanford University, Stanford, CA 94305.
Department of Chemistry, Stanford University, Stanford, CA 94305;
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12643-12650. doi: 10.1073/pnas.1921962117. Epub 2020 May 26.
The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membrane-tethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic's conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host-pathogen interactions.
细胞黏附黏蛋白调节甲型流感病毒(IAV)感染的机制仍不清楚。黏蛋白形成保护屏障,可以阻止病毒结合,并通过细胞黏附黏蛋白上的唾液酸募集 IAV 结合细胞。为了阐明黏蛋白在流感发病机制中的分子作用,我们构建了一种合成糖萼来研究 IAV 结合和融合过程中的膜黏附黏蛋白。我们设计并合成了黏蛋白的脂 tethered 糖多肽模拟物,并将其添加到脂质双层中,从而可以通过化学控制模型糖萼的长度、糖基化和表面密度。我们观察到,在高表面密度下,黏蛋白模拟物从紧凑构象转变为扩展构象。在高表面密度下,无唾液酸黏蛋白模拟物抑制 IAV 与底层糖脂受体的结合,并且这种密度与黏蛋白模拟物的构象转变相关。使用单个病毒融合测定法,我们观察到,虽然与覆盖有唾液酸化黏蛋白模拟物的囊泡结合的病毒颗粒的融合是可能的,但融合动力学以黏蛋白密度依赖性的方式减慢。这些数据为黏蛋白在 IAV 感染中提供了一种保护机制的分子模型,因此,这种合成糖萼为研究宿主-病原体相互作用的复杂界面提供了一个有用的简化模型。