Suppr超能文献

使用高清表面肌电图和深度信念网络在多肌肉等长收缩任务期间估计上肢末端执行器力

Upper Limb End-Effector Force Estimation During Multi-Muscle Isometric Contraction Tasks Using HD-sEMG and Deep Belief Network.

作者信息

Hu Ruochen, Chen Xiang, Cao Shuai, Zhang Xu, Chen Xun

机构信息

Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China.

出版信息

Front Neurosci. 2020 May 7;14:450. doi: 10.3389/fnins.2020.00450. eCollection 2020.

Abstract

In this study, research was carried out on the end-effector force estimation of two representative multi-muscle contraction tasks: elbow flexion and palm-pressing. The aim was to ascertain whether an individual muscle or a combination of muscles is more suitable for the end-effector force estimation. High-density surface electromyography (HD-sEMG) signals were collected from four primary muscle areas of the upper arm and forearm: the biceps brachii (BB), brachialis (BR), triceps brachii (TB), brachioradialis (BRD), and extensor digitorum communis (EDC). The wrist pulling and palm-pressing forces were measured in elbow flexion and palm-pressing tasks, respectively. The deep belief network (DBN) was adopted to establish the relation between HD-sEMG and the measured force. The representative signals of the four primary areas, which were considered as the input signal of the force estimation model, were extracted by HD-sEMG using the principle component analysis (PCA) algorithm, and fed separately or together into the DBN. An index termed mean impact value (MIV) was proposed to describe the priority of different muscle groups for estimating the end-effector force. The experimental results demonstrated that, in multi-muscle isometric contraction tasks, the dominant muscles with the highest activation degree could track variations in the end-effector force more effectively, and are more suitable than a combination of muscles. The main contributions of this research are as follows: (1) To fuse the activation information from different muscles effectively, DBN was adopted to establish the relationship between HD-sEMG and the generated force, and achieved highly accurate force estimation. (2) Based on the well-trained DBN force estimation model, an index termed MIV was presented to evaluate the priority of muscles for estimating the generated force.

摘要

在本研究中,针对两个具有代表性的多肌肉收缩任务(即屈肘和压掌)的末端执行器力估计展开了研究。目的是确定单块肌肉还是肌肉组合更适合用于末端执行器力估计。从上臂和前臂的四个主要肌肉区域采集了高密度表面肌电图(HD-sEMG)信号,这些区域包括肱二头肌(BB)、肱肌(BR)、肱三头肌(TB)、桡侧腕长伸肌(BRD)和指总伸肌(EDC)。在屈肘和压掌任务中,分别测量了腕部拉力和压掌力。采用深度信念网络(DBN)来建立HD-sEMG与测量力之间的关系。利用主成分分析(PCA)算法通过HD-sEMG提取四个主要区域的代表性信号,将其作为力估计模型的输入信号,分别或一起输入到DBN中。提出了一个称为平均影响值(MIV)的指标,用于描述不同肌肉群在估计末端执行器力时的优先级。实验结果表明,在多肌肉等长收缩任务中,激活程度最高的主导肌肉能够更有效地跟踪末端执行器力的变化,并且比肌肉组合更合适。本研究的主要贡献如下:(1)为了有效融合来自不同肌肉的激活信息,采用DBN建立HD-sEMG与产生的力之间的关系,并实现了高精度的力估计。(2)基于训练良好的DBN力估计模型,提出了一个称为MIV的指标,用于评估肌肉在估计产生的力时的优先级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f949/7221063/3edd53277045/fnins-14-00450-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验