Suppr超能文献

使用KPCA-DRSN模型比较单个肌肉和组合肌肉对相互作用力预测的贡献。

A comparison of contributions of individual muscle and combination muscles to interaction force prediction using KPCA-DRSN model.

作者信息

Lu Wei, Gao Lifu, Cao Huibin, Li Zebin, Wang Daqing

机构信息

Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Science Island Branch, Graduate School of USTC, Hefei, China.

出版信息

Front Bioeng Biotechnol. 2022 Sep 7;10:970859. doi: 10.3389/fbioe.2022.970859. eCollection 2022.

Abstract

Rapid and accurate prediction of interaction force is an effective way to enhance the compliant control performance. However, whether individual muscles or a combination of muscles is more suitable for interaction force prediction under different contraction tasks is of great importance in the compliant control of the wearable assisted robot. In this article, a novel algorithm that is based on sEMG and KPCA-DRSN is proposed to explore the relationship between interaction force prediction and sEMG signals. Furthermore, the contribution of each muscle to the interaction force is assessed based on the predicted results. First of all, the experimental platform for obtaining the sEMG is described. Then, the raw sEMG signal of different muscles is collected from the upper arm during different contractions. Meanwhile, the output force is collected by the force sensor. The Kernel Principal Component Analysis (KPCA) method is adopted to remove the invalid components of the raw sEMG signal. After that, the processed sequence is fed into the Deep Residual Shrinkage Network (DRSN) to predict the interaction force. Finally, based on the prediction results, the contribution of each sEMG signal from different muscles to the interaction force is evaluated by the mean impact value (MIV) indicator. The experimental results demonstrate that our methods can automatically extract the valid features of sEMG signal and provided fast and efficient prediction. In addition, the single muscle with the largest MIV index could predict the interaction force faster and more accurately than the muscle combination in different contraction tasks. The finding of our research provides a solid evidence base for the compliant control of the wearable robot.

摘要

快速准确地预测相互作用力是提高柔顺控制性能的有效途径。然而,在可穿戴辅助机器人的柔顺控制中,单独的肌肉或肌肉组合在不同收缩任务下是否更适合预测相互作用力至关重要。本文提出了一种基于表面肌电信号(sEMG)和核主成分分析深度残差收缩网络(KPCA-DRSN)的新算法,以探索相互作用力预测与sEMG信号之间的关系。此外,根据预测结果评估每块肌肉对相互作用力的贡献。首先,描述了获取sEMG的实验平台。然后,在不同收缩过程中从上臂采集不同肌肉的原始sEMG信号。同时,通过力传感器采集输出力。采用核主成分分析(KPCA)方法去除原始sEMG信号中的无效成分。之后,将处理后的序列输入深度残差收缩网络(DRSN)以预测相互作用力。最后,基于预测结果,通过平均影响值(MIV)指标评估来自不同肌肉的每个sEMG信号对相互作用力的贡献。实验结果表明,我们的方法能够自动提取sEMG信号的有效特征,并提供快速高效的预测。此外,在不同收缩任务中,MIV指数最大的单块肌肉比肌肉组合能更快、更准确地预测相互作用力。我们的研究结果为可穿戴机器人的柔顺控制提供了坚实的证据基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faf6/9491850/f40159f04132/fbioe-10-970859-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验