School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Westmead, Australia.
Euro Surveill. 2020 May;25(20). doi: 10.2807/1560-7917.ES.2020.25.20.1900519.
BackgroundBoth long- and short-term epidemiology are fundamental to disease control and require accurate bacterial typing. Genomic data resulting from implementation of whole genome sequencing in many public health laboratories can potentially provide highly sensitive and accurate descriptions of strain relatedness. Previous typing efforts using these data have mainly focussed on outbreak detection.AimWe aimed to develop multilevel genome typing (MGT), using consecutive multilocus sequence typing (MLST) schemes of increasing sizes, stepping up from seven-gene MLST to core genome MLST, to allow examination of genetic relatedness at multiple resolution levels.MethodsThe system was applied to serovar Typhimurium. The MLST scheme used at each step (MGT level), defined a given MGT-level specific sequence type (ST). The list of STs generated from all of these increasing MGT levels, was named a genome type (GT). Using MGT, we typed 9,096 previously characterised isolates with publicly available data.ResultsOur approach could identify previously described Typhimurium populations, such as the DT104 multidrug resistance lineage (GT 19-2-11) and two invasive lineages of African isolates (GT 313-2-3 and 313-2-752). Further, we showed that MGT-derived clusters can accurately distinguish five outbreaks from each other and five background isolates.ConclusionMGT provides a universal and stable nomenclature at multiple resolutions for . Typhimurium strains and could be implemented as an internationally standardised strain identification system. While established so far only for Typhimurium, the results here suggest that MGT could form the basis for typing systems in other similar microorganisms.
长期和短期流行病学都是疾病控制的基础,需要准确的细菌分型。许多公共卫生实验室实施全基因组测序后产生的基因组数据,有可能提供高度敏感和准确的菌株相关性描述。以前使用这些数据的分型工作主要集中在爆发检测上。
我们旨在开发多层次基因组分型(MGT),使用连续的多位点序列分型(MLST)方案,逐步从七基因 MLST 升级到核心基因组 MLST,以允许在多个分辨率水平上检查遗传相关性。
该系统应用于肠炎沙门氏菌血清型。每个步骤(MGT 水平)使用的 MLST 方案定义了一个特定的 MGT 水平序列型(ST)。从所有这些递增的 MGT 水平生成的 ST 列表,被命名为基因组型(GT)。使用 MGT,我们对 9096 个具有公开数据的先前特征化的分离株进行了分型。
我们的方法可以识别以前描述过的肠炎沙门氏菌种群,如 DT104 多药耐药谱系(GT 19-2-11)和两个非洲分离株的侵袭谱系(GT 313-2-3 和 313-2-752)。此外,我们表明,MGT 衍生的聚类可以准确地区分五个爆发之间的差异,以及五个背景分离株。
MGT 为肠炎沙门氏菌菌株提供了一个在多个分辨率下通用且稳定的命名法,并可以作为一种国际标准化的菌株识别系统实施。虽然迄今为止仅在肠炎沙门氏菌中建立,但这里的结果表明,MGT 可以为其他类似微生物的分型系统奠定基础。