Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.
Neuro Oncol. 2020 Dec 18;22(12):1785-1796. doi: 10.1093/neuonc/noaa128.
Residual disease of glioblastoma (GBM) causes recurrence. However, targeting residual cells has failed, due to their inaccessibility and our lack of understanding of their survival mechanisms to radiation therapy. Here we deciphered a residual cell-specific survival mechanism essential for GBM relapse.
Therapy resistant residual (RR) cells were captured from primary patient samples and cell line models mimicking clinical scenario of radiation resistance. Molecular signaling of resistance in RR cells was identified using RNA sequencing, genetic and pharmacological perturbations, overexpression systems, and molecular and biochemical assays. Findings were validated in patient samples and an orthotopic mouse model.
RR cells form more aggressive tumors than the parental cells in an orthotopic mouse model. Upon radiation-induced damage, RR cells preferentially activated a nonhomologous end joining (NHEJ) repair pathway, upregulating Ku80 and Artemis while downregulating meiotic recombination 11 (Mre11) at protein but not RNA levels. Mechanistically, RR cells upregulate the Su(var)3-9/enhancer-of-zeste/trithorax (SET) domain and mariner transposase fusion gene (SETMAR), mediating high levels of H3K36me2 and global euchromatization. High H3K36me2 leads to efficiently recruiting NHEJ proteins. Conditional knockdown of SETMAR in RR cells induced irreversible senescence partly mediated by reduced H3K36me2. RR cells expressing mutant H3K36A could not retain Ku80 at double-strand breaks, thus compromising NHEJ repair, leading to apoptosis and abrogation of tumorigenicity in vitro and in vivo. Pharmacological inhibition of the NHEJ pathway phenocopied H3K36 mutation effect, confirming dependency of RR cells on the NHEJ pathway for their survival.
We demonstrate that the SETMAR-NHEJ regulatory axis is essential for the survival of clinically relevant radiation RR cells, abrogation of which prevents recurrence in GBM.
胶质母细胞瘤(GBM)的残留疾病导致复发。然而,由于无法接近这些残留细胞,以及我们对其辐射治疗后存活机制缺乏了解,针对这些细胞的治疗失败了。在这里,我们破译了一个对 GBM 复发至关重要的残留细胞特异性存活机制。
从原发性患者样本和模拟临床放射抵抗情况的细胞系模型中捕获具有治疗抵抗性的残留(RR)细胞。使用 RNA 测序、遗传和药理学扰动、过表达系统以及分子和生化测定来鉴定 RR 细胞中抵抗的分子信号。在患者样本和原位小鼠模型中验证了这些发现。
RR 细胞在原位小鼠模型中比亲本细胞形成更具侵袭性的肿瘤。在辐射诱导的损伤后,RR 细胞优先激活非同源末端连接(NHEJ)修复途径,在蛋白质而非 RNA 水平上调 Ku80 和 Artemis,同时下调减数分裂重组 11(Mre11)。在机制上,RR 细胞上调 Su(var)3-9/增强子-of-zeste/trithorax(SET)结构域和 mariner 转座酶融合基因(SETMAR),介导高水平的 H3K36me2 和全染色质区化。高 H3K36me2 导致高效募集 NHEJ 蛋白。RR 细胞中 SETMAR 的条件性敲低部分通过降低 H3K36me2 诱导不可逆衰老。表达突变 H3K36A 的 RR 细胞不能将 Ku80 保留在双链断裂处,从而破坏 NHEJ 修复,导致体外和体内的细胞凋亡和肿瘤发生能力丧失。NHEJ 途径的药理学抑制模拟了 H3K36 突变的效应,证实了 RR 细胞对 NHEJ 途径的依赖性是其存活的关键。
我们证明了 SETMAR-NHEJ 调节轴对于临床上相关的辐射 RR 细胞的存活至关重要,阻断该轴可防止 GBM 复发。