Zheng Xuerong, Han Xiaopeng, Cao Yanhui, Zhang Yan, Nordlund Dennis, Wang Jihui, Chou Shulei, Liu Hui, Li Lanlan, Zhong Cheng, Deng Yida, Hu Wenbin
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of the Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.
Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Adv Mater. 2020 Jul;32(26):e2000607. doi: 10.1002/adma.202000607. Epub 2020 May 27.
Constructing heterostructures with abundant interfaces is essential for integrating the multiple functionalities in single entities. Herein, the synthesis of NiSe /CoSe heterostructures with different interfacial densities via an innovative strategy of successive ion injection is reported. The resulting hybrid electrocatalyst with dense heterointerfaces exhibits superior electrocatalytic properties in an alkaline electrolyte, superior to other benchmarks and precious metal catalysts. Advanced synchrotron techniques, post structural characterizations, and density functional theory (DFT) simulations reveal that the introduction of atomic-level interfaces can lower the oxidation overpotential of bimetallic Ni and Co active sites (whereas Ni can be more easily activated than Co ) and induce the electronic interaction between the core selenides and surface in situ generated oxides/hydroxides, which play a critical role in synergistically reducing energetic barriers and accelerating reaction kinetics for catalyzing the oxygen evolution. Hence, the heterointerface structure facilitates the catalytic performance enhancement via increasing the intrinsic reactivity of metallic atoms and enhancing the synergistic effect between the inner selenides and surface oxidation species. This work not only complements the understanding on the origins of the activity of electrocatalysts based on metal selenides, but also sheds light on further surface and interfacial engineering of advanced hybrid materials.
构建具有丰富界面的异质结构对于在单一实体中整合多种功能至关重要。在此,我们报道了通过连续离子注入的创新策略合成具有不同界面密度的NiSe/CoSe异质结构。所得具有密集异质界面的混合电催化剂在碱性电解质中表现出优异的电催化性能,优于其他基准和贵金属催化剂。先进的同步辐射技术、结构表征和密度泛函理论(DFT)模拟表明,原子级界面的引入可以降低双金属Ni和Co活性位点的氧化过电位(其中Ni比Co更容易被激活),并诱导核心硒化物与原位生成的表面氧化物/氢氧化物之间的电子相互作用,这在协同降低能量势垒和加速催化析氧反应动力学方面起着关键作用。因此,异质界面结构通过提高金属原子的本征反应性和增强内部硒化物与表面氧化物种之间的协同效应,促进了催化性能的提升。这项工作不仅补充了对基于金属硒化物的电催化剂活性起源的理解,也为先进混合材料的进一步表面和界面工程提供了思路。