Zhong Yi, Peng Yuhao, Gu Hao, Zhang Shan, Wang Feng Ryan, Xiao Wei, Yu Hulei, Gu Dong
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P.R. China.
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, P.R. China.
iScience. 2025 May 3;28(6):112582. doi: 10.1016/j.isci.2025.112582. eCollection 2025 Jun 20.
Dry reforming of methane (DRM) offers a sustainable route to convert CH and CO into syngas, addressing both greenhouse gas emissions and energy demand. However, catalyst deactivation due to sintering and coking limits practical applications. In this work, we developed a mesoporous Ni-based catalyst (Ni/ZrSBA-15-OH) featuring abundant Ni-ZrO interfaces and small Ni nanoparticles (5.6 nm) confined within a stable silica framework. This catalyst showed excellent performance, achieving 80% CH and 87% CO conversions at 750°C, with minimal coke formation (0.4 mg g h) and high durability (1.3% CH conversion loss over 20 h). Advanced characterizations (X-ray absorption spectroscopy [XAS], transmission electron microscopy [TEM], H-temperature programmed reduction [H-TPR], and temperature-programmed surface reaction [TPSR]) revealed that the metal-oxide interface enhances the activation of reactants and stabilizes active sites. Density functional theory (DFT) calculations confirmed that the Ni-ZrO interface increases the energy barrier for CH∗ dehydrogenation, effectively suppressing carbon deposition. This study provides a rational strategy for designing structurally robust and coke-resistant Ni-based catalysts for efficient DRM.
甲烷干重整(DRM)提供了一条将CH₄和CO₂转化为合成气的可持续途径,既能解决温室气体排放问题,又能满足能源需求。然而,由于烧结和积炭导致的催化剂失活限制了其实际应用。在这项工作中,我们开发了一种介孔镍基催化剂(Ni/ZrSBA-15-OH),其具有丰富的Ni-ZrO界面以及限制在稳定二氧化硅骨架内的小尺寸镍纳米颗粒(5.6纳米)。该催化剂表现出优异的性能,在750℃时实现了80%的CH₄转化率和87%的CO₂转化率,积炭极少(0.4毫克/克·小时)且具有高耐久性(20小时内CH₄转化率损失1.3%)。先进的表征(X射线吸收光谱[XAS]、透射电子显微镜[TEM]、氢气程序升温还原[H₂-TPR]和程序升温表面反应[TPSR])表明,金属-氧化物界面增强了反应物的活化并稳定了活性位点。密度泛函理论(DFT)计算证实,Ni-ZrO界面增加了CHₓ脱氢的能垒,有效抑制了碳沉积。这项研究为设计用于高效DRM的结构坚固且抗积炭的镍基催化剂提供了合理策略。