School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing 100700, China.
State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing 100700, China.
J Plant Physiol. 2020 Jul;250:153181. doi: 10.1016/j.jplph.2020.153181. Epub 2020 May 12.
Tetrandrine is the most effective small molecule that has been found to inhibit the Ebola virus. It is a typical bisbenzylisoquinoline alkaloid and is the main active ingredient in Stephania tetrandra. Metabolic engineering and synthetic biology are potential methods for efficient and rapid acquisition of tetrandrine. S-adenosyl-L-methionine: (S)-norcoclaurine-6-O-methyltransferase (6OMT) is a rate-limiting step involved in the biosynthesis of tetrandrine. In this study, we identify S-adenosyl-L-methionine: (S)-norcoclaurine-6-O-methyltransferase from S. tetrandra, which catalyzes the conversion of (S)-norcoclaurine to (S)-coclaurine. Four 6OMT-like genes were cloned from S. tetrandra. An in vitro enzyme assay showed that St6OMT1 could catalyze the conversion of (S)-norcoclaurine to produce (S)-coclaurine. St6OMT2 can catalyze the production of very few (S)-coclaurine molecules, accompanied by more by-products with m/z 300, compared to St6OMT1. The newly discovered 6OMTs will provide an optional genetic component for benzylisoquinoline alkaloid (BIA) synthetic biology research. This work will lay the foundation for the analysis of the biosynthetic pathway of tetrandrine in S. tetrandra.
汉防己甲素是目前发现的最有效的抗埃博拉病毒小分子药物,它是一种典型的双苄基异喹啉类生物碱,是粉防己(Stephania tetrandra)的主要活性成分。代谢工程和合成生物学是高效快速获取汉防己甲素的潜在方法。S-腺苷-L-蛋氨酸:(S)-荷叶碱-6-O-甲基转移酶(6OMT)是汉防己甲素生物合成中的一个限速步骤。本研究从粉防己中鉴定到 S-腺苷-L-蛋氨酸:(S)-荷叶碱-6-O-甲基转移酶,它可以催化(S)-荷叶碱转化为(S)-粉防己碱。从粉防己中克隆了 4 个 6OMT 样基因。体外酶活性分析表明,St6OMT1 可以催化(S)-荷叶碱转化生成(S)-粉防己碱。与 St6OMT1 相比,St6OMT2 只能催化生成少量的(S)-粉防己碱,同时伴有更多 m/z 为 300 的副产物。新发现的 6OMTs 将为苄基异喹啉生物碱(BIA)合成生物学研究提供一个可选的遗传元件。这项工作将为分析粉防己中汉防己甲素的生物合成途径奠定基础。