Suppr超能文献

个性化精神病学当前面临的挑战及未来可能的发展,重点关注精神障碍。

Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders.

作者信息

Levchenko Anastasia, Nurgaliev Timur, Kanapin Alexander, Samsonova Anastasia, Gainetdinov Raul R

机构信息

Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.

Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.

出版信息

Heliyon. 2020 May 20;6(5):e03990. doi: 10.1016/j.heliyon.2020.e03990. eCollection 2020 May.

Abstract

A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.

摘要

个性化医疗方法似乎特别适用于精神病学。事实上,将精神疾病视为每个患者独特的分子途径失调,这些分子途径控制着大脑的发育和功能,这似乎是理解和治疗这一医学类别的疾病最合理的方式。为了提取有关相关分子途径的正确信息,可以从采样的表型和遗传生物标志物中获取数据,然后通过机器学习算法进行分析。本综述描述了个性化精神病学领域当前的困难,并给出了一些可能对精神病和其他精神疾病有可操作价值的生物标志物的例子,包括一些与个性化精神病学相关的遗传学研究例子。这些生物标志物中的大多数尚未准备好应用于临床实践。下一步,给出了个性化精神病学未来可能发展方向的展望,特别关注可用于处理多维数据集的机器学习算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6da/7240336/957d8c5fe2e4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验