Suppr超能文献

介入性静息态功能磁共振成像研究中基于种子点的相关性和独立成分分析的分析流程。

An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies.

作者信息

Seewoo Bhedita J, Joos Alexander C, Feindel Kirk W

机构信息

Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Brain Plasticity Group, Perron Institute for Neurological and Translational Science, WA, Australia; Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia.

Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, The University of Western Australia, Perth, WA, Australia.

出版信息

Neurosci Res. 2021 Apr;165:26-37. doi: 10.1016/j.neures.2020.05.006. Epub 2020 May 25.

Abstract

Resting-state functional MRI (rs-fMRI) is a task-free method of detecting spatially distinct brain regions with correlated activity, which form organised networks known as resting-state networks (RSNs). The two most widely used methods for analysing RSN connectivity are seed-based correlation analysis (SCA) and independent component analysis (ICA) but there is no established workflow of the optimal combination of analytical steps and how to execute them. Rodent rs-fMRI data from our previous longitudinal brain stimulation studies were used to investigate these two methods using FSL. Specifically, we examined: (1) RSN identification and group comparisons in ICA, (2) ICA-based denoising compared to nuisance signal regression in SCA, and (3) seed selection in SCA. In ICA, using a baseline-only template resulted in greater functional connectivity within RSNs and more sensitive detection of group differences than when an average pre/post stimulation template was used. In SCA, the use of an ICA-based denoising method in the preprocessing of rs-fMRI data and the use of seeds from individual functional connectivity maps in running group comparisons increased the sensitivity of detecting group differences by preventing the reduction in signals of interest. Accordingly, when analysing animal and human rs-fMRI data, we infer that the use of baseline-only templates in ICA and ICA-based denoising and individualised seeds in SCA will improve the reliability of results and comparability across rs-fMRI studies.

摘要

静息态功能磁共振成像(rs-fMRI)是一种无需任务的方法,用于检测具有相关活动的空间上不同的脑区,这些脑区形成了被称为静息态网络(RSNs)的有组织网络。分析RSN连通性的两种最广泛使用的方法是基于种子点的相关分析(SCA)和独立成分分析(ICA),但目前尚无关于分析步骤的最佳组合及其执行方式的既定工作流程。我们利用之前纵向脑刺激研究中的啮齿动物rs-fMRI数据,使用FSL来研究这两种方法。具体而言,我们考察了:(1)ICA中的RSN识别和组间比较;(2)与SCA中的干扰信号回归相比,基于ICA的去噪;以及(3)SCA中的种子点选择。在ICA中,与使用平均刺激前/后模板相比,仅使用基线模板可导致RSN内更强的功能连通性以及对组间差异更灵敏的检测。在SCA中,在rs-fMRI数据预处理中使用基于ICA的去噪方法以及在进行组间比较时使用来自个体功能连通性图谱的种子点,通过防止感兴趣信号的减少提高了检测组间差异的灵敏度。因此,在分析动物和人类rs-fMRI数据时,我们推断在ICA中使用仅基线模板、在SCA中使用基于ICA的去噪和个体化种子点将提高结果的可靠性以及跨rs-fMRI研究的可比性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验