Suppr超能文献

评估使用全脑覆盖压缩 SENSE 的高分辨率 T1 灌注 MRI 的可行性:在胶质瘤分级中的应用。

Evaluating feasibility of high resolution T1-perfusion MRI with whole brain coverage using compressed SENSE: Application to glioma grading.

机构信息

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.

Philips Innovation Campus, Bangalore, India.

出版信息

Eur J Radiol. 2020 Aug;129:109049. doi: 10.1016/j.ejrad.2020.109049. Epub 2020 May 11.

Abstract

PURPOSE

To evaluate the efficacy of optimized T1-Perfusion MRI protocol (protocol-2) with whole brain coverage and improved spatial resolution using Compressed-SENSE (CSENSE) to differentiate high-grade-glioma (HGG) and low-grade-glioma (LGG) and to compare it with the conventional protocol (protocol-1) with partial brain coverage used in our center.

METHODS

This study included MRI data from 5 healthy volunteers, a phantom and 126 brain tumor patients. Current study had two parts: To analyze the effect of CSENSE on 3D-T1-weighted (W) fast-field-echo (FFE) images, T1-W, dual-PDT2-W turbo-spin-echo images and T1 maps, and to evaluate the performance of high resolution T1-Perfusion MRI protocol with whole brain coverage optimized using CSENSE. Coefficient-of-Variation (COV), Relative-Percentage-Error (RPE), Normalized-Mean-Squared-Error (NMSE) and qualitative scoring were used for the former study. Tracer-kinetic (K,v,v) and hemodynamic (rCBV,rCBF) parameters computed from both protocols were used to differentiate LGG and HGG.

RESULTS

The image quality of all structural images was found to be of diagnostic quality till R = 4. NMSE in healthy T1-W-FFE images and COV in phantom images increased with-respect-to R and images provided optimum quality till R = 4. Structural images and maps exhibited artefacts from R = 6. All parameters in tumor tissue and hemodynamic parameters in healthy gray matter tissue computed from both protocols were not significantly different. Parameters computed from protocol-2 performed better in terms of glioma grading. For both protocols, rCBF performed least (AUC = 0.759 and 0.851) and combination of all parameters performed best (AUC = 0.890 and 0.964).

CONCLUSION

CSENSE (R = 4) can be used to improve the resolution and brain coverage for T1-Perfusion analysis used to differentiate gliomas.

摘要

目的

评估使用全脑覆盖和改进的空间分辨率的优化 T1 灌注 MRI 协议(协议 2)的功效,该协议使用压缩感知(CSENSE)来区分高级别胶质瘤(HGG)和低级别胶质瘤(LGG),并将其与我们中心使用的部分脑覆盖的常规协议(协议 1)进行比较。

方法

本研究包括 5 名健康志愿者、一个体模和 126 名脑肿瘤患者的 MRI 数据。本研究有两个部分:分析 CSENSE 对 3D-T1 加权(W)快速场回波(FFE)图像、T1-W、双 PD-T2-W 涡轮自旋回波图像和 T1 图的影响,并评估使用 CSENSE 优化的全脑覆盖的高分辨率 T1 灌注 MRI 协议的性能。用于前者的研究包括变异系数(COV)、相对百分比误差(RPE)、归一化均方误差(NMSE)和定性评分。从两个协议计算的示踪动力学(K,v,v)和血液动力学(rCBV,rCBF)参数用于区分 LGG 和 HGG。

结果

所有结构图像的图像质量均被认为具有诊断质量,直到 R=4。健康 T1-W-FFE 图像中的 NMSE 和体模图像中的 COV 随着 R 的增加而增加,并且图像提供了最佳质量,直到 R=4。结构图像和地图显示 R=6 时出现伪影。从两个协议计算的肿瘤组织中的所有参数和健康灰质组织中的血液动力学参数均无显著差异。从协议 2 计算得出的参数在胶质瘤分级方面表现更好。对于两个协议,rCBF 的表现最差(AUC=0.759 和 0.851),而所有参数的组合表现最好(AUC=0.890 和 0.964)。

结论

CSENSE(R=4)可用于提高 T1 灌注分析的分辨率和脑覆盖范围,用于区分胶质瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验