From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China.
Philips Healthcare (Y.Z., J.L., D.T.), Beijing, China.
AJNR Am J Neuroradiol. 2024 Apr 8;45(4):444-452. doi: 10.3174/ajnr.A8161.
Accelerating the image acquisition speed of MR imaging without compromising the image quality is challenging. This study aimed to evaluate the feasibility of contrast-enhanced (CE) 3D T1WI and CE 3D-FLAIR sequences reconstructed with compressed sensitivity encoding artificial intelligence (CS-AI) for detecting brain metastases (BM) and explore the optimal acceleration factor (AF) for clinical BM imaging.
Fifty-one patients with cancer with suspected BM were included. Fifty participants underwent different customized CE 3D-T1WI or CE 3D-FLAIR sequence scans. Compressed SENSE encoding acceleration 6 (CS6), a commercially available standard sequence, was used as the reference standard. Quantitative and qualitative methods were used to evaluate image quality. The SNR and contrast-to-noise ratio (CNR) were calculated, and qualitative evaluations were independently conducted by 2 neuroradiologists. After exploring the optimal AF, sample images were obtained from 1 patient by using both optimized sequences.
Quantitatively, the CNR of the CS-AI protocol for CE 3D-T1WI and CE 3D-FLAIR sequences was superior to that of the CS protocol under the same AF (< .05). Compared with reference CS6, the CS-AI groups had higher CNR values (all < .05), with the CS-AI10 scan having the highest value. The SNR of the CS-AI group was better than that of the reference for both CE 3D-T1WI and CE 3D-FLAIR sequences (all < .05). Qualitatively, the CS-AI protocol produced higher image quality scores than did the CS protocol with the same AF (all < .05). In contrast to the reference CS6, the CS-AI group showed good image quality scores until an AF of up to 10 (all < .05). The CS-AI10 scan provided the optimal images, improving the delineation of normal gray-white matter boundaries and lesion areas (< .05). Compared with the reference, CS-AI10 showed reductions in scan time of 39.25% and 39.93% for CE 3D-T1WI and CE 3D-FLAIR sequences, respectively.
CE 3D-T1WI and CE 3D-FLAIR sequences reconstructed with CS-AI for the detection of BM may provide a more effective alternative reconstruction approach than CS. CS-AI10 is suitable for clinical applications, providing optimal image quality and a shortened scan time.
在不影响图像质量的前提下,提高磁共振成像(MRI)的图像采集速度具有一定挑战性。本研究旨在评估基于压缩感知人工智能(CS-AI)重建的对比增强(CE)3D T1WI 和 CE 3D-FLAIR 序列在检测脑转移瘤(BM)中的可行性,并探索用于临床 BM 成像的最佳加速因子(AF)。
本研究纳入了 51 例疑似 BM 的癌症患者。其中 50 例患者接受了不同的定制化 CE 3D-T1WI 或 CE 3D-FLAIR 序列扫描。压缩敏感度编码人工智能(CS-AI)加速 6(CS6)作为商业标准序列作为参考标准。采用定量和定性方法评估图像质量。计算信噪比(SNR)和对比噪声比(CNR),并由 2 名神经放射科医生对图像质量进行独立定性评估。在探索最佳 AF 后,从 1 例患者中获得了使用优化序列的样本图像。
定量结果显示,在相同 AF 下,CS-AI 方案在 CE 3D-T1WI 和 CE 3D-FLAIR 序列中的 CNR 优于 CS 方案(均<.05)。与参考 CS6 相比,CS-AI 组的 CNR 值更高(均<.05),CS-AI10 扫描的 CNR 值最高。CE 3D-T1WI 和 CE 3D-FLAIR 序列中,CS-AI 组的 SNR 均优于参考组(均<.05)。定性结果显示,在相同 AF 下,CS-AI 方案的图像质量评分高于 CS 方案(均<.05)。与参考 CS6 相比,CS-AI 组的图像质量评分在 AF 最高达 10 时仍保持良好(均<.05)。CS-AI10 扫描可提供最佳图像,改善了正常灰白质边界和病灶区域的勾画(<.05)。与参考组相比,CE 3D-T1WI 和 CE 3D-FLAIR 序列的 CS-AI10 扫描分别减少了 39.25%和 39.93%的扫描时间。
用于 BM 检测的 CS-AI 重建的 CE 3D-T1WI 和 CE 3D-FLAIR 序列可能提供比 CS 更有效的替代重建方法。CS-AI10 适用于临床应用,可提供最佳图像质量和缩短扫描时间。