Suppr超能文献

压缩感知编码人工智能通过优化图像质量和减少扫描时间来加速脑转移瘤成像。

Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time.

机构信息

From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China.

Philips Healthcare (Y.Z., J.L., D.T.), Beijing, China.

出版信息

AJNR Am J Neuroradiol. 2024 Apr 8;45(4):444-452. doi: 10.3174/ajnr.A8161.

Abstract

BACKGROUND AND PURPOSE

Accelerating the image acquisition speed of MR imaging without compromising the image quality is challenging. This study aimed to evaluate the feasibility of contrast-enhanced (CE) 3D T1WI and CE 3D-FLAIR sequences reconstructed with compressed sensitivity encoding artificial intelligence (CS-AI) for detecting brain metastases (BM) and explore the optimal acceleration factor (AF) for clinical BM imaging.

MATERIALS AND METHODS

Fifty-one patients with cancer with suspected BM were included. Fifty participants underwent different customized CE 3D-T1WI or CE 3D-FLAIR sequence scans. Compressed SENSE encoding acceleration 6 (CS6), a commercially available standard sequence, was used as the reference standard. Quantitative and qualitative methods were used to evaluate image quality. The SNR and contrast-to-noise ratio (CNR) were calculated, and qualitative evaluations were independently conducted by 2 neuroradiologists. After exploring the optimal AF, sample images were obtained from 1 patient by using both optimized sequences.

RESULTS

Quantitatively, the CNR of the CS-AI protocol for CE 3D-T1WI and CE 3D-FLAIR sequences was superior to that of the CS protocol under the same AF (< .05). Compared with reference CS6, the CS-AI groups had higher CNR values (all < .05), with the CS-AI10 scan having the highest value. The SNR of the CS-AI group was better than that of the reference for both CE 3D-T1WI and CE 3D-FLAIR sequences (all < .05). Qualitatively, the CS-AI protocol produced higher image quality scores than did the CS protocol with the same AF (all < .05). In contrast to the reference CS6, the CS-AI group showed good image quality scores until an AF of up to 10 (all < .05). The CS-AI10 scan provided the optimal images, improving the delineation of normal gray-white matter boundaries and lesion areas (< .05). Compared with the reference, CS-AI10 showed reductions in scan time of 39.25% and 39.93% for CE 3D-T1WI and CE 3D-FLAIR sequences, respectively.

CONCLUSIONS

CE 3D-T1WI and CE 3D-FLAIR sequences reconstructed with CS-AI for the detection of BM may provide a more effective alternative reconstruction approach than CS. CS-AI10 is suitable for clinical applications, providing optimal image quality and a shortened scan time.

摘要

背景与目的

在不影响图像质量的前提下,提高磁共振成像(MRI)的图像采集速度具有一定挑战性。本研究旨在评估基于压缩感知人工智能(CS-AI)重建的对比增强(CE)3D T1WI 和 CE 3D-FLAIR 序列在检测脑转移瘤(BM)中的可行性,并探索用于临床 BM 成像的最佳加速因子(AF)。

材料与方法

本研究纳入了 51 例疑似 BM 的癌症患者。其中 50 例患者接受了不同的定制化 CE 3D-T1WI 或 CE 3D-FLAIR 序列扫描。压缩敏感度编码人工智能(CS-AI)加速 6(CS6)作为商业标准序列作为参考标准。采用定量和定性方法评估图像质量。计算信噪比(SNR)和对比噪声比(CNR),并由 2 名神经放射科医生对图像质量进行独立定性评估。在探索最佳 AF 后,从 1 例患者中获得了使用优化序列的样本图像。

结果

定量结果显示,在相同 AF 下,CS-AI 方案在 CE 3D-T1WI 和 CE 3D-FLAIR 序列中的 CNR 优于 CS 方案(均<.05)。与参考 CS6 相比,CS-AI 组的 CNR 值更高(均<.05),CS-AI10 扫描的 CNR 值最高。CE 3D-T1WI 和 CE 3D-FLAIR 序列中,CS-AI 组的 SNR 均优于参考组(均<.05)。定性结果显示,在相同 AF 下,CS-AI 方案的图像质量评分高于 CS 方案(均<.05)。与参考 CS6 相比,CS-AI 组的图像质量评分在 AF 最高达 10 时仍保持良好(均<.05)。CS-AI10 扫描可提供最佳图像,改善了正常灰白质边界和病灶区域的勾画(<.05)。与参考组相比,CE 3D-T1WI 和 CE 3D-FLAIR 序列的 CS-AI10 扫描分别减少了 39.25%和 39.93%的扫描时间。

结论

用于 BM 检测的 CS-AI 重建的 CE 3D-T1WI 和 CE 3D-FLAIR 序列可能提供比 CS 更有效的替代重建方法。CS-AI10 适用于临床应用,可提供最佳图像质量和缩短扫描时间。

相似文献

本文引用的文献

10
Brain metastases: the role of clinical imaging.脑转移瘤:临床影像学的作用。
Br J Radiol. 2022 Feb 1;95(1130):20210944. doi: 10.1259/bjr.20210944. Epub 2021 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验