Xu Rui, Tian Dapeng, Wang Zhongshi
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033, China.
Micromachines (Basel). 2020 May 25;11(5):537. doi: 10.3390/mi11050537.
In this paper, a discrete second order linear equation with the Krasnosel'skii-Pokrovskii (KP) operator is used to describe the piezoelectric actuated stage. The weights of the KP operators are identified by the gradient descent algorithm. To suppress the hysteresis nonlinearity of the piezoelectric actuated stage, this paper proposes an adaptive tracking control with the hysteresis decomposition on the designed error surface. The proposed adaptive tracking controller dispenses with any form of the feed-forward hysteresis compensation and the unknown parameters of the discrete second order linear equation are adaptively adjusted. Some simulations are implemented to verify the effectiveness of the KP operators, then a series of modeling and control experiments are carried out on the piezoelectric actuated stages experimental systems. The comparative experimental results verify the feasibility of the KP operators modeling method and the adaptive tracking control method.
本文采用带有克拉索夫斯基 - 波克罗夫斯基(KP)算子的离散二阶线性方程来描述压电驱动平台。通过梯度下降算法确定 KP 算子的权重。为抑制压电驱动平台的滞后非线性,本文在设计的误差面上提出一种具有滞后分解的自适应跟踪控制方法。所提出的自适应跟踪控制器无需任何形式的前馈滞后补偿,并且能自适应调整离散二阶线性方程的未知参数。进行了一些仿真以验证 KP 算子的有效性,然后在压电驱动平台实验系统上开展了一系列建模与控制实验。对比实验结果验证了 KP 算子建模方法和自适应跟踪控制方法的可行性。