Suppr超能文献

基于克拉索夫斯基-波克罗夫斯基模型的磁形状记忆合金执行器前馈-反馈混合控制

Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

作者信息

Zhou Miaolei, Zhang Qi, Wang Jingyuan

机构信息

College of Communication Engineering, Jilin University, Changchun, China.

出版信息

PLoS One. 2014 May 14;9(5):e97086. doi: 10.1371/journal.pone.0097086. eCollection 2014.

Abstract

As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

摘要

作为一种新型智能材料,磁性形状记忆合金在微驱动和微定位执行器领域具有响应频率快和应变能力突出的优点。然而,磁性形状记忆合金执行器中的滞后非线性限制了系统性能和进一步应用。在此,我们提出一种前馈-反馈混合控制方法,以提高控制精度并减轻磁性形状记忆合金执行器滞后非线性的影响。首先,通过建立基于克拉索夫斯基-波克罗夫斯基算子的逆滞后模型的前馈控制器,对磁性形状记忆合金执行器进行滞后非线性补偿。其次,本文采用经典的比例积分微分反馈控制与前馈控制相结合构成混合控制系统,并且为了进一步增强系统的自适应性能和提高控制精度,用径向基函数神经网络自整定比例积分微分反馈控制取代经典的比例积分微分反馈控制。利用径向基函数神经网络的自学习能力获取磁性形状记忆合金执行器的雅可比信息,用于比例积分微分控制器中参数的在线调整。最后,仿真结果表明,本文提出的混合控制方法能够大幅提高磁性形状记忆合金执行器的控制精度,最大跟踪误差从开环系统中的1.1%降低到混合控制系统中的0.43%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46c/4020807/7264f98beaa3/pone.0097086.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验