Cai Peipei, Deng Xiaogang
College of Control Science and Engineering, China University of Petroleum, Qingdao 266580, China.
ISA Trans. 2020 Oct;105:210-220. doi: 10.1016/j.isatra.2020.05.029. Epub 2020 May 20.
In order to detect the incipient faults of nonlinear industrial processes effectively, this paper proposes an enhanced kernel principal component analysis (KPCA) method, called multi-block probability related KPCA method (DMPRKPCA). First of all, one probability related nonlinear statistical monitoring framework is constructed by combining KPCA with Kullback Leibler divergence (KLD), which measures the probability distribution changes caused by small shifts. Second, in view of the problem that the traditional KLD ignores the dynamic characteristic of process data, the dynamic KLD component is designed by applying the exponentially weighted moving average approach, which highlights the temporal data changes in the moving window. Third, considering that the holistic KLD component may submerge the local statistical changes, a multi-block modeling strategy is designed by dividing the whole KLD components into two sub-blocks corresponding to the mean and variance information, respectively. Case studies on one numerical system and the simulated chemical reactor demonstrate the superiority of the DMPRKPCA method over the conventional KPCA method.
为了有效检测非线性工业过程的早期故障,本文提出了一种增强的核主成分分析(KPCA)方法,称为多块概率相关KPCA方法(DMPRKPCA)。首先,通过将KPCA与Kullback Leibler散度(KLD)相结合,构建了一个概率相关的非线性统计监测框架,该散度用于测量由微小变化引起的概率分布变化。其次,针对传统KLD忽略过程数据动态特性的问题,应用指数加权移动平均方法设计了动态KLD分量,突出了移动窗口中时间数据的变化。第三,考虑到整体KLD分量可能会掩盖局部统计变化,通过将整个KLD分量分别划分为对应均值和方差信息的两个子块,设计了一种多块建模策略。在一个数值系统和模拟化学反应器上的案例研究证明了DMPRKPCA方法相对于传统KPCA方法的优越性。