Suppr超能文献

改进的统计故障检测技术及其在由S-系统建模的生物现象中的应用。

Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

作者信息

Mansouri Majdi, Nounou Mohamed N, Nounou Hazem N

出版信息

IEEE Trans Nanobioscience. 2017 Sep;16(6):504-512. doi: 10.1109/TNB.2017.2726144. Epub 2017 Jul 12.

Abstract

In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL) values.

摘要

在我们之前的工作中,我们已经证明了基于线性多尺度主成分分析(PCA)的移动窗口(MW)-广义似然比检验(GLRT)技术优于经典PCA以及基于多尺度主成分分析(MSPCA)的GLRT方法。所开发的故障检测算法通过在不同窗口值下最大化特定误报率(FAR)的检测概率而具有最优特性,然而,大多数实际系统是非线性的,这使得线性PCA方法在很大程度上无法解决非线性问题。因此,在本文中,首先,我们应用非线性PCA来获得一组数据的精确主成分,并使用核主成分分析(KPCA)模型处理各种非线性。KPCA是最流行的非线性统计方法之一。其次,我们将MW-GLRT技术扩展为一种利用指数权重对移动窗口中的残差(而非等权重)进行处理的技术,因为这样可能能够通过使用指数加权移动平均(EWMA)降低FAR来进一步提高故障检测性能。所开发的检测方法称为EWMA-GLRT,具有改进的特性,如更小的漏检率和FAR以及更小的平均运行长度。所开发的EWMA-GLRT背后的理念是计算一个新的GLRT统计量,该统计量以递减指数方式整合当前和先前的数据信息,给予最新数据更多权重。这提供了对GLRT统计量更准确的估计,并提供了更强的记忆能力,从而能够在故障检测方面做出更好的决策。因此,在本文中,开发了一种基于KPCA的EWMA-GLRT方法并将其应用于实践,以改善由S-系统建模的生物现象中的故障检测并增强监测过程均值。基于KPCA的EWMA-GLRT故障检测算法背后的理念是将所提出的EWMA-GLRT故障检测图与KPCA模型带来的优势相结合。因此,它通过监测大肠杆菌模型中一些关键变量(如酶、转运蛋白、调节蛋白、赖氨酸和尸胺)来增强Cad系统的故障检测。结果证明了所提出的基于KPCA的EWMA-GLRT方法优于Q、GLRT、EWMA、休哈特和移动窗口-GLRT方法。根据FAR、漏检率和平均运行长度(ARL)值对检测性能进行评估。

相似文献

3
Enhanced data validation strategy of air quality monitoring network.空气质量监测网络的数据增强验证策略。
Environ Res. 2018 Jan;160:183-194. doi: 10.1016/j.envres.2017.09.023. Epub 2017 Oct 6.
4
Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.基于串行主成分分析的非线性过程故障诊断。
IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):560-572. doi: 10.1109/TNNLS.2016.2635111. Epub 2016 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验