Suppr超能文献

基于 ER 网络的多群体遗传算法求解柔性作业车间调度问题。

Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems.

机构信息

School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang, China.

School of Mechanical Engineering, Sichuan University, Chengdu, China.

出版信息

PLoS One. 2020 May 29;15(5):e0233759. doi: 10.1371/journal.pone.0233759. eCollection 2020.

Abstract

A genetic algorithm (GA) cannot always avoid premature convergence, and multi-population is usually used to overcome this limitation by dividing the population into several sub-populations (sub-population number) with the same number of individuals (sub-population size). In previous research, the questions of how a network structure composed of sub-populations affects the propagation rate of advantageous genes among sub-populations and how it affects the performance of GA have always been ignored. Therefore, we first propose a multi-population GA with an ER network (MPGA-ER). Then, by using the flexible job shop scheduling problem (FJSP) as an example and considering the total individual number (TIN), we study how the sub-population number and size and the propagation rate of advantageous genes affect the performance of MPGA-ER, wherein the performance is evaluated by the average optimal value and success rate based on TIN. The simulation results indicate the following regarding the performance of MPGA-ER: (i) performance shows considerable improvement compared with that of traditional GA; (ii) for an increase in the sub-population number for a certain TIN, the performance first increases slowly, and then decreases rapidly; (iii) for an increase in the sub-population size for a certain TIN, the performance of MPGA-ER first increases rapidly and then tends to remain stable; and (iv) with an increase in the propagation rate of advantageous genes, the performance first increases rapidly and then decreases slowly. Finally, we use a parameter-optimized MPGA-ER to solve for more FJSP instances and demonstrate its effectiveness by comparing it with that of other algorithms proposed in other studies.

摘要

遗传算法(GA)并不能总是避免早熟收敛,通常使用多群体来克服这一限制,即将群体划分为几个具有相同个体数量(子群体大小)的子群体(子群体数量)。在以前的研究中,网络结构由子群体组成,如何影响子群体之间有利基因的传播速度,以及如何影响 GA 的性能,这些问题一直被忽视。因此,我们首先提出了一种具有 ER 网络的多群体 GA(MPGA-ER)。然后,通过使用灵活作业车间调度问题(FJSP)作为示例,并考虑总个体数(TIN),我们研究了子群体数量和大小以及有利基因的传播速度如何影响 MPGA-ER 的性能,其中性能是基于 TIN 通过平均最优值和成功率来评估的。模拟结果表明 MPGA-ER 的性能如下:(i)与传统 GA 相比,性能有了显著提高;(ii)对于给定 TIN 的子群体数量增加,性能先缓慢增加,然后迅速下降;(iii)对于给定 TIN 的子群体大小增加,MPGA-ER 的性能先快速增加,然后趋于稳定;(iv)随着有利基因传播速度的增加,性能先快速增加,然后缓慢下降。最后,我们使用参数优化的 MPGA-ER 来解决更多的 FJSP 实例,并通过与其他研究中提出的其他算法进行比较来证明其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6b/7259647/88fee679a719/pone.0233759.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验