Suppr超能文献

阿尔茨海默病小鼠模型睡眠期间海马-皮质相互作用受损。

Impaired Hippocampal-Cortical Interactions during Sleep in a Mouse Model of Alzheimer's Disease.

机构信息

Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.

Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA.

出版信息

Curr Biol. 2020 Jul 6;30(13):2588-2601.e5. doi: 10.1016/j.cub.2020.04.087. Epub 2020 May 28.

Abstract

Spatial learning is impaired in humans with preclinical Alzheimer's disease (AD). We reported similar impairments in 3xTg-AD mice learning a spatial reorientation task. Memory reactivation during sleep is critical for learning-related plasticity, and memory consolidation is correlated with hippocampal sharp wave ripple (SWR) density, cortical delta waves (DWs), cortical spindles, and the temporal coupling of these events-postulated as physiological substrates for memory consolidation. Further, hippocampal-cortical discoordination is prevalent in individuals with AD. Thus, we hypothesized that impaired memory consolidation mechanisms in hippocampal-cortical networks could account for spatial memory deficits. We assessed sleep architecture, SWR-DW dynamics, and memory reactivation in a mouse model of tauopathy and amyloidosis implanted with a recording array targeting isocortex and hippocampus. Mice underwent daily recording sessions of rest-task-rest while learning the spatial reorientation task. We assessed memory reactivation by matching activity patterns from the approach to the unmarked reward zone to patterns during slow-wave sleep (SWS). AD mice had more SWS, but reduced SWR density. The increased SWS compensated for reduced SWR density so there was no reduction in SWR number. In control mice, spindles were phase-coupled with DWs, and hippocampal SWR-cortical DW coupling was strengthened in post-task sleep and was correlated with performance on the spatial reorientation task the following day. However, in AD mice, SWR-DW and spindle-DW coupling were impaired. Thus, reduced SWR-DW coupling may cause impaired learning in AD, and spindle-DW coupling during short rest-task-rest sessions may serve as a biomarker for early AD-related changes in these brain dynamics.

摘要

空间学习在有临床前阿尔茨海默病 (AD) 的人类中受损。我们在 3xTg-AD 小鼠学习空间再定向任务中报告了类似的损伤。睡眠期间的记忆再激活对于学习相关的可塑性至关重要,而记忆巩固与海马体尖波涟漪 (SWR) 密度、皮质 delta 波 (DWs)、皮质纺锤波以及这些事件的时间耦合相关-被假设为记忆巩固的生理基础。此外,AD 患者中普遍存在海马-皮质不协调。因此,我们假设海马-皮质网络中记忆巩固机制的受损可能导致空间记忆缺陷。我们评估了在植入针对大脑皮层和海马体的记录阵列的 tau 病和淀粉样变性小鼠模型中的睡眠结构、SWR-DW 动力学和记忆再激活。小鼠在学习空间再定向任务的同时进行了日常的休息-任务-休息记录会话。我们通过将接近未标记奖励区的活动模式与慢波睡眠 (SWS) 期间的模式进行匹配来评估记忆再激活。AD 小鼠有更多的 SWS,但 SWR 密度降低。增加的 SWS 补偿了 SWR 密度的降低,因此 SWR 数量没有减少。在对照小鼠中,纺锤波与 DWs 相位耦合,海马体 SWR-皮质 DW 耦合在任务后睡眠中增强,并与第二天空间再定向任务的表现相关。然而,在 AD 小鼠中,SWR-DW 和纺锤波-DW 耦合受损。因此,SWR-DW 耦合减少可能导致 AD 学习受损,并且短休息-任务-休息期间的纺锤波-DW 耦合可能作为这些大脑动力学中与 AD 相关变化的早期生物标志物。

相似文献

1
Impaired Hippocampal-Cortical Interactions during Sleep in a Mouse Model of Alzheimer's Disease.
Curr Biol. 2020 Jul 6;30(13):2588-2601.e5. doi: 10.1016/j.cub.2020.04.087. Epub 2020 May 28.
4
Monosynaptic Hippocampal-Prefrontal Projections Contribute to Spatial Memory Consolidation in Mice.
J Neurosci. 2019 Aug 28;39(35):6978-6991. doi: 10.1523/JNEUROSCI.2158-18.2019. Epub 2019 Jul 8.
5
Mechanisms of Neuronal Reactivation in Memory Consolidation: A Perspective from Pathological Conditions.
Neuroscience. 2024 Jul 23;551:196-204. doi: 10.1016/j.neuroscience.2024.05.030. Epub 2024 May 27.
8
Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
J Neurosci. 2017 Dec 6;37(49):11789-11805. doi: 10.1523/JNEUROSCI.2291-17.2017. Epub 2017 Oct 31.
9
Hijacking of hippocampal-cortical oscillatory coupling during sleep in temporal lobe epilepsy.
Epilepsy Behav. 2021 Aug;121(Pt B):106608. doi: 10.1016/j.yebeh.2019.106608. Epub 2019 Nov 15.
10
Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice.
Neurobiol Learn Mem. 2015 Nov;125:152-162. doi: 10.1016/j.nlm.2015.09.003. Epub 2015 Sep 15.

引用本文的文献

1
SLEEP AND NEURODEGENERATION: EXAMINING POTENTIAL PHYSIOLOGICAL MECHANISMS.
Curr Sleep Med Rep. 2025 Dec;11(1). doi: 10.1007/s40675-024-00316-6. Epub 2025 Jan 3.
4
The neural basis of neuropsychiatric symptoms in Alzheimer's disease.
Front Aging Neurosci. 2024 Dec 5;16:1487875. doi: 10.3389/fnagi.2024.1487875. eCollection 2024.
5
Memory reactivation generates new, adaptive behaviours that reach beyond direct experience.
Sci Rep. 2024 Dec 3;14(1):30097. doi: 10.1038/s41598-024-78906-1.
6
An Enteric Bacterial Infection Triggers Neuroinflammation and Neurobehavioral Impairment in 3xTg-AD Transgenic Mice.
J Infect Dis. 2024 Sep 10;230(Supplement_2):S95-S108. doi: 10.1093/infdis/jiae165.
8
Reduced Prefrontal-Thalamic Theta Flow During Working Memory Retrieval in APP/PS1 Mice.
J Alzheimers Dis. 2024;97(4):1737-1749. doi: 10.3233/JAD-231078.
9
Sleep-based neuronal oscillations as a physiological biomarker for Alzheimer's disease: is night time the right time?
Neural Regen Res. 2024 Jul 1;19(7):1417-1418. doi: 10.4103/1673-5374.386412. Epub 2023 Oct 2.
10
An Integrated Platform for Electrophysiology in Spatial Cognition Experiments.
eNeuro. 2023 Nov 21;10(11). doi: 10.1523/ENEURO.0274-23.2023. Print 2023 Nov.

本文引用的文献

2
Sleep architecture changes in the APP23 mouse model manifest at onset of cognitive deficits.
Behav Brain Res. 2019 Nov 5;373:112089. doi: 10.1016/j.bbr.2019.112089. Epub 2019 Jul 17.
3
Sleep and β-Amyloid Deposition in Alzheimer Disease: Insights on Mechanisms and Possible Innovative Treatments.
Front Pharmacol. 2019 Jun 20;10:695. doi: 10.3389/fphar.2019.00695. eCollection 2019.
4
Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain.
J Neurosci. 2019 Aug 7;39(32):6315-6324. doi: 10.1523/JNEUROSCI.0503-19.2019. Epub 2019 Jun 17.
5
Impaired Spatial Reorientation in the 3xTg-AD Mouse Model of Alzheimer's Disease.
Sci Rep. 2019 Feb 4;9(1):1311. doi: 10.1038/s41598-018-37151-z.
6
Motor deficits in 16-month-old male and female 3xTg-AD mice.
Behav Brain Res. 2019 Jan 1;356:305-313. doi: 10.1016/j.bbr.2018.09.006. Epub 2018 Sep 9.
7
The retrosplenial-parietal network and reference frame coordination for spatial navigation.
Behav Neurosci. 2018 Oct;132(5):416-429. doi: 10.1037/bne0000260. Epub 2018 Aug 9.
9
Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation.
Neurobiol Learn Mem. 2019 Apr;160:21-31. doi: 10.1016/j.nlm.2018.04.004. Epub 2018 Apr 13.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验