Suppr超能文献

可变形针状聚乳酸-羟基乙酸共聚物-聚乙二醇纤维的细胞命运

Cellular fate of deformable needle-shaped PLGA-PEG fibers.

作者信息

Zhang Bokai, Zhu Mingliu, Li Zhi, Lung Ping Sai, Chrzanowski Wojciech, Kwok Chi Tat, Lu Jian, Li Quan

机构信息

Department of Physics, The Chinese University of Hong Kong; Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.

Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; State Key Laboratory of nonlinear mechanics, Institute of Mechanics, Chinese Academy of Sciences, No.15, West Road, North 4(th) Ring, Beijing, 100190, China.

出版信息

Acta Biomater. 2020 Aug;112:182-189. doi: 10.1016/j.actbio.2020.05.029. Epub 2020 May 26.

Abstract

Deformability of micro/nanometer sized particles plays an important role in particle-cell interactions and thus becomes a key parameter in carrier design in biomedicine application such as drug delivery and vaccinology. Yet the influence of material's deformability on the cellular fate of the particles as well as physiology response of live cells are to be understood. Here we show the cellular fate of needle shaped (high aspect ratio ~25) PLGA-PEG copolymer fibers depending on their deformability. We found that all the fibers entered murine macrophage cells (RAW 264.7) via phagocytosis. While the fibers of high apparent Young's modulus (average value = 872 kPa) maintained their original shape upon phagocytosis, their counterparts of low apparent Young's modulus (average value = 56 kPa) curled in cells. The observed deformation of fibers of low apparent Young's modulus in cells coincided with abnormal intracellular actin translocation and absence of lysosome/phagosome fusion in macrophages, suggesting the important role of material mechanical properties and mechano-related cellular pathway in affecting cell physiology. STATEMENT OF SIGNIFICANCE: Particles are increasingly important in the field of biomedicine, especially when they are serving as drug carriers. Physical cues, such as mechanical properties, were shown to provide insight into their stability and influence on physiology inside the cell. In the current study, we managed to fabricate 5 types of needle shaped PLGA-PEG fibers with controlled Young's modulus. We found that hard fibers maintained their original shape upon phagocytosis, while soft fibers were curled by actin compressive force inside the cell, causing abnormal actin translocation and impediment of lysosome/phagosome fusion, suggesting the important role of material mechanical properties and mechano-related cellular pathway in affecting cell physiology.

摘要

微/纳米级颗粒的可变形性在颗粒与细胞的相互作用中起着重要作用,因此成为生物医学应用(如药物递送和疫苗学)中载体设计的关键参数。然而,材料的可变形性对颗粒的细胞命运以及活细胞的生理反应的影响仍有待了解。在此,我们展示了针状(高纵横比~25)聚乳酸-乙醇酸共聚物-聚乙二醇(PLGA-PEG)共聚物纤维的细胞命运与其可变形性有关。我们发现所有纤维都通过吞噬作用进入小鼠巨噬细胞(RAW 264.7)。虽然高表观杨氏模量(平均值 = 872 kPa)的纤维在吞噬作用后保持其原始形状,但其低表观杨氏模量(平均值 = 56 kPa)的对应物在细胞中卷曲。在细胞中观察到的低表观杨氏模量纤维的变形与细胞内肌动蛋白异常转位以及巨噬细胞中溶酶体/吞噬体融合的缺失相一致,这表明材料力学性能和机械相关细胞途径在影响细胞生理方面的重要作用。

意义声明

颗粒在生物医学领域越来越重要,特别是当它们用作药物载体时。物理线索,如机械性能,已被证明能深入了解其稳定性以及对细胞内生理学的影响。在当前研究中,我们成功制备了5种具有可控杨氏模量的针状PLGA-PEG纤维。我们发现硬纤维在吞噬作用后保持其原始形状,而软纤维在细胞内被肌动蛋白压缩力卷曲,导致肌动蛋白异常转位并阻碍溶酶体/吞噬体融合,这表明材料力学性能和机械相关细胞途径在影响细胞生理方面的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验