Suppr超能文献

基于优化特征变量的近红外光谱法检测椰糠基质中水分含量的可行性

Feasibility of NIR spectroscopy detection of moisture content in coco-peat substrate based on the optimization characteristic variables.

作者信息

Lu Bing, Wang Xufeng, Liu Nihong, He Ke, Wu Kai, Li Huiling, Tang Xiuying

机构信息

College of Engineering, China Agricultural University, Beijing, PR China.

College of Mechanical and Electrical Engineering, Tarim University, Alar, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct 5;239:118455. doi: 10.1016/j.saa.2020.118455. Epub 2020 May 8.

Abstract

Moisture content is an important index to evaluate the water content in substrate. Near-infrared (NIR) spectroscopy was used for rapid quantitative detection of moisture content of coco-peat substrate. The different spectral pretreatment methods were adopted to pre-process the spectral data. Successive projection algorithm (SPA), elimination of uninformative variables algorithm (UVE) and synergy interval partial least squares algorithm (Si-PLS) were used to screen characteristic variables of coco-peat substrate original spectral data and different pretreatment spectral data. The partial least squares (PLSR) and multiple linear regression (MLR) were used to establish the relationship model between the spectral data and reference measurement value of moisture content. In comparison, the best and simplest spectral prediction model was established when SPA was used to screen the characteristic variables of Savitzky-Golay (S-G) smoothing spectral data and MLR was used to establish the model. And the corresponding correlation coefficient and root mean square error of calibration set were 0.9976 and 1.0989%, respectively; the correlation coefficient and root mean square error of prediction set were 0.9963 and 1.4029%, respectively, and RPD was 11.28. The results of this study provided a feasible method for the rapid detection of moisture content of coco-peat substrate.

摘要

水分含量是评估基质中含水量的一个重要指标。采用近红外(NIR)光谱法对椰糠基质的水分含量进行快速定量检测。采用不同的光谱预处理方法对光谱数据进行预处理。运用连续投影算法(SPA)、无信息变量消除算法(UVE)和协同区间偏最小二乘法(Si-PLS)对椰糠基质原始光谱数据及不同预处理光谱数据进行特征变量筛选。采用偏最小二乘回归(PLSR)和多元线性回归(MLR)建立光谱数据与水分含量参考测量值之间的关系模型。相比之下,当采用SPA筛选Savitzky-Golay(S-G)平滑光谱数据的特征变量并采用MLR建立模型时,建立了最佳且最简单的光谱预测模型。校准集的相应相关系数和均方根误差分别为0.9976和1.0989%;预测集的相关系数和均方根误差分别为0.9963和1.4029%,RPD为11.28。本研究结果为椰糠基质水分含量的快速检测提供了一种可行的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验