Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA.
Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA.
Curr Cardiol Rep. 2020 May 29;22(7):46. doi: 10.1007/s11886-020-01299-w.
This paper investigates present uses and future potential of artificial intelligence (AI) applied to intracoronary imaging technologies.
Advances in data analytics and digitized medical imaging have enabled clinical application of AI to improve patient outcomes and reduce costs through better diagnosis and enhanced workflow. Applications of AI to IVUS and IVOCT have produced improvements in image segmentation, plaque analysis, and stent evaluation. Machine learning algorithms are able to predict future coronary events through the use of imaging results, clinical evaluations, laboratory tests, and demographics. The application of AI to intracoronary imaging holds significant promise for improved understanding and treatment of coronary heart disease. Even in these early stages, AI has demonstrated the ability to improve the prediction of cardiac events. Large curated data sets and databases are needed to speed the development of AI and enable testing and comparison among algorithms.
本文研究了人工智能(AI)在冠状动脉成像技术中的应用现状和未来潜力。
数据分析和数字化医学成像的进步使 AI 能够应用于临床,通过更好的诊断和增强工作流程来改善患者的预后并降低成本。AI 在 IVUS 和 IVOCT 中的应用提高了图像分割、斑块分析和支架评估的能力。机器学习算法能够通过使用成像结果、临床评估、实验室测试和人口统计学来预测未来的冠状动脉事件。AI 在冠状动脉成像中的应用有望改善对冠心病的理解和治疗。即使在这个早期阶段,AI 已经证明了改善心脏事件预测的能力。需要大型的经过精心整理的数据集合和数据库来加速 AI 的发展,并实现算法之间的测试和比较。