Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
Curr Opin Cell Biol. 2020 Jun;64:105-111. doi: 10.1016/j.ceb.2020.04.005. Epub 2020 May 27.
The genome requires tight regulation in space and time to maintain viable cell functions. Advances in our understanding of the 3D genome show a complex hierarchical network of structures, involving compartments, membraneless bodies, topologically associating domains, lamina associated domains, protein- or RNA-mediated loops, enhancer-promoter contacts, and accessible chromatin regions, with chromatin state regulation through epigenetic and transcriptional mechanisms. Further technology developments are poised to increase genomic resolution, dissect single-cell behaviors, including in vivo dynamics of genome folding, and provide mechanistic perspectives that identify further 3D genome players by integrating multiomics information. We highlight recent key developments in 4D nucleome methodologies and give a perspective on their future directions.
基因组需要在时空上进行严格的调控,以维持细胞的正常功能。人们对 3D 基因组的理解不断深入,揭示了一个涉及隔室、无膜细胞器、拓扑关联域、核纤层相关域、蛋白或 RNA 介导的环、增强子-启动子接触以及开放染色质区域的复杂多层次网络结构,通过表观遗传和转录机制对染色质状态进行调控。进一步的技术发展将提高基因组分辨率,解析单细胞行为,包括体内基因组折叠的动态,并通过整合多组学信息,从机制上确定更多的 3D 基因组参与者。我们重点介绍了 4D 核组学方法的最新关键进展,并对其未来方向进行了展望。